python导入csv数据实现lasso分析并绘制lasso回归分析交叉验证曲线图
时间: 2024-12-25 08:37:35 浏览: 7
在Python中,使用pandas库加载CSV数据,再配合sklearn库中的Lasso回归模型进行分析,并绘制交叉验证曲线图,可以按以下步骤操作:
1. **导入必要的库**:
```python
import pandas as pd
import numpy as np
from sklearn.linear_model import LassoCV # 使用LassoCV来进行自动选择最佳alpha
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
```
2. **加载和预处理数据**:
```python
df = pd.read_csv('your_file.csv') # 替换为你的CSV文件路径
X = df.drop('target_column', axis=1) # 假设'data'是你想要预测的目标列
y = df['target_column']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 对数据进行标准化,加速模型收敛
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
3. **创建LassoCV模型并计算交叉验证曲线**:
```python
lasso_cv = LassoCV(cv=5) # 设置交叉验证次数为5
lasso_cv.fit(X_train_scaled, y_train)
# 计算不同alpha值下交叉验证的MSE
mse_paths = -lasso_cv.mse_path_(X_train_scaled) # 负数是因为sklearn默认返回的是最小二乘估计的平方
```
4. **绘制交叉验证曲线图**:
```python
plt.figure(figsize=(10, 6))
plt.plot(lasso_cv.alphas_, mse_paths[-1], label='Training error')
plt.plot(lasso_cv.alphas_, mse_paths.mean(axis=1), label='Average training error')
plt.xlabel('LASSO alpha')
plt.ylabel('Mean squared error')
plt.xscale('log')
plt.legend()
plt.title('LASSO Cross Validation Curve')
plt.show()
```
这里我们得到了一条训练误差曲线和平均训练误差曲线,可以帮助我们找到最合适的alpha值。
阅读全文