matlab 编程应用二分法求解方程x3-x-1=0在区间[1,1.5]内的数值解xk,要求绝对误差小于10-8. 给出简单完整代码不用调用函数
时间: 2024-10-09 14:02:50 浏览: 38
bisection:非线性方程 f(x)=0 的二分法求解。-matlab开发
当然可以。二分法(也称为黄金分割搜索)是一种数值逼近方法,用于在一个闭区间内找到零点。对于方程 \( x^3 - x - 1 = 0 \),我们可以编写一个简单的MATLAB程序来应用这个算法。
首先,我们需要定义一个函数来计算给定x值时方程的右侧表达式的值:
```matlab
function f(x)
return x^3 - x - 1;
end
```
接下来,我们编写二分查找函数,使用while循环直到满足绝对误差条件:
```matlab
function xk = bisectionMethod(f, a, b, tol)
% 初始区间 [a, b]
if f(a) * f(b) >= 0 % 检查区间端点是否符号相反,否则没有零点
error('Interval does not contain a zero.');
end
% 边界检查
while (b-a) >= tol
c = a + (b-a)/2; % 黄金分割点
if f(c) == 0 % 如果找到零点,则返回
xk = c;
break;
elseif f(a) * f(c) < 0 % 根据中间点和左边界符号改变,更新区间
b = c;
else
a = c;
end
end
xk = a; % 若未达到精度则取区间的平均值作为近似解
end
% 定义初始参数
f = @(x) x^3 - x - 1;
a = 1;
b = 1.5;
tol = 1e-8;
% 调用函数求解
xk = bisectionMethod(f, a, b, tol);
disp(['The numerical solution is x ≈ ', num2str(xk)]);
```
运行这段代码后,它将在区间 [1, 1.5] 内寻找满足方程 \( x^3 - x - 1 = 0 \) 的数值解,直到绝对误差小于 \( 10^{-8} \)。
阅读全文