LSTM多步长matlab代码
时间: 2023-11-11 13:06:39 浏览: 90
基于贝叶斯优化算法的LSTM模型时间序列多步预测Matlab程序代码
5星 · 资源好评率100%
以下是LSTM多步长MATLAB代码的示例:
```matlab
% 加载数据
data = readmatrix('original_data.xlsx')';
label = readmatrix('fault_labels.xlsx');
% 划分测试集和训练集
train_data = data(1:4,1:2:700);
train_label = label(1:2:700);
test_data = data(1:4,2:2:700);
test_label = label(2:2:700);
% 定义LSTM网络架构
inputSize = 12;
numHiddenUnits = 100;
numClasses = 9;
layers = [
sequenceInputLayer(inputSize)
bilstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
% 训练LSTM网络
options = trainingOptions('adam', ...
'MaxEpochs',100, ...
'MiniBatchSize',64, ...
'ValidationData',{test_data,test_label}, ...
'ValidationFrequency',30, ...
'Verbose',false);
net = trainNetwork(train_data,train_label,layers,options);
% 预测测试集
YPred = classify(net,test_data);
% 计算准确率
accuracy = sum(YPred == test_label)/numel(test_label);
disp("Accuracy: " + accuracy);
```
该代码加载数据,划分测试集和训练集,定义LSTM网络架构,训练LSTM网络,预测测试集并计算准确率。
阅读全文