python三次指数平滑法预测代码
时间: 2023-09-16 14:01:09 浏览: 301
下面是使用Python编写的三次指数平滑法预测代码:
```python
import numpy as np
def triple_exponential_smoothing(series, alpha, beta, gamma, n_preds):
"""
三次指数平滑法预测函数
参数:
series:时间序列数据
alpha:平滑系数
beta:趋势系数
gamma:季节性系数
n_preds:预测步数
返回:
预测结果
"""
result = []
season_length = len(series) // 4
initial_seasonal_components = np.array([series[i] - series[i - season_length] for i in range(season_length)])
def smooth(series, alpha):
smoothed = [series[0]]
for i in range(1, len(series)):
smoothed.append(alpha * series[i] + (1 - alpha) * smoothed[i - 1])
return smoothed
def triple_smooth(series, alpha, beta, gamma, season_length, n_preds):
smooth_result = smooth(series, alpha)
trend = smooth(smooth_result, beta)
seasonal = [initial_seasonal_components[i % season_length] for i in range(len(series))]
forecast = [smooth_result[-1] + trend[-1] + seasonal[-season_length]]
for _ in range(n_preds - 1):
next_smooth = alpha * (series[-1] - seasonal[-1]) + (1 - alpha) * (smooth_result[-1] + trend[-1])
next_trend = beta * (next_smooth - smooth_result[-1]) + (1 - beta) * trend[-1]
next_seasonal = gamma * (series[-1] - next_smooth) + (1 - gamma) * seasonal[-season_length]
forecast.append(next_smooth + next_trend + next_seasonal)
smooth_result.append(next_smooth)
trend.append(next_trend)
seasonal.append(next_seasonal)
series.append(next_smooth + next_trend + next_seasonal)
return forecast
result = triple_smooth(series, alpha, beta, gamma, season_length, n_preds)
return result
# 使用示例
series = [10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32]
alpha = 0.5
beta = 0.4
gamma = 0.3
n_preds = 4
predicted_values = triple_exponential_smoothing(series, alpha, beta, gamma, n_preds)
print("预测结果:", predicted_values)
```
以上代码实现了三次指数平滑法的预测功能。在函数`triple_exponential_smoothing`中,通过指定的平滑系数alpha、趋势系数beta和季节性系数gamma,以及预测步数n_preds,对给定的时间序列数据进行预测。代码中的例子是一个简单的序列,可以通过修改series、alpha、beta、gamma和n_preds来适应不同的场景和需求。最后,打印出预测结果predicted_values。
阅读全文