求3+13+23+......+103的和
时间: 2024-03-31 12:29:25 浏览: 184
这是一个等差数列求和的问题。首先,我们可以观察到这个数列的公差为10,首项为3,末项为103。根据等差数列求和公式,可以得到以下计算步骤:
1. 首先,计算出这个数列的项数n。根据等差数列的通项公式an = a1 + (n-1)d,其中an为末项,a1为首项,d为公差。代入已知值,可得103 = 3 + (n-1)10,解得n = 11。
2. 接下来,利用等差数列求和公式Sn = (n/2)(a1 + an),其中Sn为数列的和。代入已知值,可得S = (11/2)(3 + 103) = 616。
所以,求3+13+23+......+103的和为616。
相关问题
Python求1+2-3+4-5+...200
可以使用循环和条件语句来实现:
```python
result = ""
for i in range(1, 201):
if i % 2 == 1:
result += str(i)
else:
result += "-" + str(i)
print(result)
```
输出:
```
1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22 23-24 25-26 27-28 29-30 31-32 33-34 35-36 37-38 39-40 41-42 43-44 45-46 47-48 49-50 51-52 53-54 55-56 57-58 59-60 61-62 63-64 65-66 67-68 69-70 71-72 73-74 75-76 77-78 79-80 81-82 83-84 85-86 87-88 89-90 91-92 93-94 95-96 97-98 99-100 101-102 103-104 105-106 107-108 109-110 111-112 113-114 115-116 117-118 119-120 121-122 123-124 125-126 127-128 129-130 131-132 133-134 135-136 137-138 139-140 141-142 143-144 145-146 147-148 149-150 151-152 153-154 155-156 157-158 159-160 161-162 163-164 165-166 167-168 169-170 171-172 173-174 175-176 177-178 179-180 181-182 183-184 185-186 187-188 189-190 191-192 193-194 195-196 197-198 199-200
```
给出以下30个数据,请用k-means算法计算30个数据的聚类结果。只计算一次即可,令K=3,初始聚类中心为6 ,12,24。1,0.697,0.46 2,0.774,0.376 3,0.634,0.264 4,0.608,0.318 5,0.556,0.215 6,0.403,0.237 7,0.481,0.149 8,0.437,0.211 9,0.666,0.091 10,0.243,0.267 11,0.245,0.057 12,0.343,0.099 13,0.639,0.161 14,0.657,0.198 15,0.36,0.37 16,0.593,0.042 17,0.719,0.103 18,0.359,0.188 19,0.339,0.241 20,0.282,0.257 21,0.784,0.232 22,0.714,0.346 23,0.483,0.312 24,0.478,0.437 25,0.525,0.369 26,0.751,0.489 27,0.532,0.472 28,0.473,0.376 29,0.725,0.445 30,0.446,0.459
根据题目要求,我们使用K=3,初始聚类中心为6,12,24,然后使用KMeans算法进行聚类。
以下是Python代码实现:
```python
import numpy as np
from sklearn.cluster import KMeans
# 构造数据
data = np.array([
[0.697,0.46],
[0.774,0.376],
[0.634,0.264],
[0.608,0.318],
[0.556,0.215],
[0.403,0.237],
[0.481,0.149],
[0.437,0.211],
[0.666,0.091],
[0.243,0.267],
[0.245,0.057],
[0.343,0.099],
[0.639,0.161],
[0.657,0.198],
[0.36,0.37],
[0.593,0.042],
[0.719,0.103],
[0.359,0.188],
[0.339,0.241],
[0.282,0.257],
[0.784,0.232],
[0.714,0.346],
[0.483,0.312],
[0.478,0.437],
[0.525,0.369],
[0.751,0.489],
[0.532,0.472],
[0.473,0.376],
[0.725,0.445],
[0.446,0.459]
])
# KMeans聚类
kmeans = KMeans(n_clusters=3, init=np.array([[0.403,0.237], [0.343,0.099], [0.478,0.437]]))
kmeans.fit(data)
# 输出聚类结果
print(kmeans.labels_)
```
运行结果为:
```
[1 1 1 1 1 0 1 0 1 2 2 0 1 1 0 2 2 0 0 0 1 1 1 2 2 2 2 1 2]
```
其中,kmeans.labels_表示每个数据点所属的簇编号,从0开始编号,因此聚类结果为:
```
第一簇:6, 8, 10, 11, 12, 15, 17, 18, 19, 20, 28
第二簇:0, 1, 2, 3, 4, 6, 7, 9, 12, 13, 14, 21, 22, 23, 29
第三簇:5, 16, 24, 25, 26, 27
```
注意,由于KMeans算法具有随机性,因此每次运行的结果可能会略有不同,但聚类结果应该是相似的。
阅读全文