三维插值python
时间: 2023-12-21 10:32:16 浏览: 151
python实现二维插值的三维显示
以下是两种Python实现三维插值的方法:
1. 约束三维曲面RBF插值:
```python
import numpy as np
from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 创建数据点
x = np.random.rand(100) * 4 - 2
y = np.random.rand(100) * 4 - 2
z = x**2 + y**2
# 创建网格点
xi = np.linspace(-2, 2, 100)
yi = np.linspace(-2, 2, 100)
xi, yi = np.meshgrid(xi, yi)
# 进行RBF插值
rbf = Rbf(x, y, z, function='linear')
zi = rbf(xi, yi)
# 绘制三维曲面
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(xi, yi, zi, cmap='viridis')
plt.show()
```
2. 克里金插值:
```python
import numpy as np
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 创建数据点
x = np.random.rand(100) * 4 - 2
y = np.random.rand(100) * 4 - 2
z = x**2 + y**2
# 创建网格点
xi = np.linspace(-2, 2, 100)
yi = np.linspace(-2, 2, 100)
xi, yi = np.meshgrid(xi, yi)
# 进行克里金插值
zi = griddata((x, y), z, (xi, yi), method='cubic')
# 绘制三维曲面
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(xi, yi, zi, cmap='viridis')
plt.show()
```
阅读全文