transformer做预训练综述
时间: 2023-11-15 12:02:56 浏览: 85
预训练是自然语言处理中的一个重要技术,而Transformer是目前最常用的预训练模型之一。在预训练过程中,Transformer模型会通过大量的无标注数据进行训练,以学习语言的内在规律和语义表示。预训练方法包括从头开始型预训练、持续型预训练、同时型预训练、任务自适应型预训练和知识继承型预训练。在预训练完成后,可以使用下游任务对模型进行微调,以适应具体的任务需求。目前,Huggingface Transformers和Transformer-interpret等软件库提供了丰富的Transformer预训练模型和工具,方便用户进行相关研究和应用。
相关问题
写一篇预训练语言模型综述
预训练语言模型(Pretrained Language Model,PLM)是指在大规模语料库上训练的通用语言模型,可以用于各种自然语言处理任务。PLM 的出现极大地促进了自然语言处理领域的发展,成为了近年来的热点研究方向。
PLM 的历史可以追溯到 2013 年的 Word2vec 模型和 2015 年的 GloVe 模型,它们以词向量为基础,但都无法处理词序关系。2018 年,Google 团队提出了 BERT 模型(Bidirectional Encoder Representations from Transformers),它采用 Transformer 模型,可以双向学习句子中的上下文信息,从而在多项自然语言处理任务上取得了优异成绩。BERT 模型开创了 PLM 的新时代。
随后,BERT 模型的改进和扩展不断涌现。例如,XLNet 模型使用了无序自回归技术,进一步提升了模型的性能;RoBERTa 模型在训练过程中采用了更多的数据和更长的序列,进一步提高了模型的泛化性能;ELECTRA 模型则使用了对抗训练技术,让模型更加鲁棒。
除了上述模型外,还有一些针对特定任务的 PLM 模型,例如 GPT(Generative Pre-trained Transformer)模型和 T5(Text-to-Text Transfer Transformer)模型等。这些模型在各自的任务上表现出色,为实际应用带来了很大的便利。
然而,PLM 模型的训练需要消耗大量的计算资源和时间,对于普通用户来说很难实现。因此,各大厂商都提供了预训练的模型参数,供用户直接使用。这些预训练的模型参数可以快速地应用于各种自然语言处理任务,大大减少了模型训练的时间和资源消耗。
总之,PLM 模型是自然语言处理领域的重要进展,为各种自然语言处理任务提供了强有力的支持。随着技术的不断发展,PLM 模型的性能和应用场景还将不断拓展。
阅读全文