Adaboost算法
时间: 2023-10-22 11:24:29 浏览: 111
Adaboost算法是一种集成学习方法,它通过组合多个弱分类器来构建一个强分类器。具体实现上,Adaboost算法会根据每个样本的权重进行迭代,每次迭代都会调整样本的权重以使分类器更加关注分错的样本。这样,每个弱分类器都能够针对分错的样本进行更好的分类,最终将它们结合起来形成一个强分类器。
另一种解释是,Adaboost算法可以视为加法模型、损失函数为指数函数、学习算法为前向分步算法时的二类分类学习方法。这种解释对于理解提升树算法和BGDT算法等有很大帮助。
总结起来,Adaboost算法是一种集成学习方法,它通过组合多个弱分类器形成强分类器,具体实现上会根据样本的权重进行迭代调整,以使分类器更关注分错的样本。另外,Adaboost算法也可以被看作是加法模型、损失函数为指数函数、学习算法为前向分步算法时的二类分类学习方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [adaboost算法](https://download.csdn.net/download/yantingting000/9872105)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [AdaBoost算法详解](https://blog.csdn.net/weixin_42385782/article/details/123242042)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文