yolov8iou改进
时间: 2023-11-16 20:05:31 浏览: 277
优化YOLOv8代码得到的
YoloV8的改进策略主要是将CIoU替换成Wise-IoU,支持EIoU、GIoU、DIoU、SIoU无缝替换。其中,CIoU是传统的IoU计算方法,而Wise-IoU是一种新的IoU计算方法,它可以更好地处理物体之间的重叠情况,从而提高检测精度。此外,YoloV8还对模型的骨干网络进行了改进,采用了更加高效的CSPDarknet53网络,从而提高了模型的检测速度和精度。
下面是YoloV8的改进策略的代码实现:
```python
# 使用Wise-IoU计算IoU
def wise_iou(box1, box2):
# 计算交集的左上角和右下角坐标
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
# 计算交集面积
inter_area = max(0, x2 - x1 + 1) * max(0, y2 - y1 + 1)
# 计算并集面积
box1_area = (box1[2] - box1[0] + 1) * (box1[3] - box1[1] + 1)
box2_area = (box2[2] - box2[0] + 1) * (box2[3] - box2[1] + 1)
union_area = box1_area + box2_area - inter_area
# 计算IoU
iou = inter_area / union_area
# 计算中心点的距离
center_x1 = (box1[0] + box1[2]) / 2
center_y1 = (box1[1] + box1[3]) / 2
center_x2 = (box2[0] + box2[2]) / 2
center_y2 = (box2[1] + box2[3]) / 2
center_distance = (center_x1 - center_x2) ** 2 + (center_y1 - center_y2) ** 2
# 计算Wise-IoU
wise_iou = iou - center_distance / union_area / 4
return wise_iou
```
阅读全文