混淆矩阵中的tp,fp,tn,fn
时间: 2024-01-02 13:22:42 浏览: 92
输入TP,TN,FP和FN,然后输出混淆矩阵和评价指标的Python代码
5星 · 资源好评率100%
混淆矩阵中的TP、FP、TN和FN分别代表真正例(True Positive)、假正例(False Positive)、真负例(True Negative)和假负例(False Negative)。
- TP(真正例):表示模型正确地预测为正例的样本数量。
- FP(假正例):表示模型错误地预测为正例的样本数量。
- TN(真负例):表示模型正确地预测为负例的样本数量。
- FN(假负例):表示模型错误地预测为负例的样本数量。
混淆矩阵是用于评估分类模型性能的一种方法,通过统计模型预测结果与真实标签的对应关系,可以计算出准确率、召回率、精确率等指标。
以下是一个示例代码,用于计算混淆矩阵中的TP、FP、TN和FN:
```python
# 输入TP,TN,FP,FN
TP = int(input("请输入TP:"))
TN = int(input("请输入TN:"))
FP = int(input("请输入FP:"))
FN = int(input("请输入FN:"))
# 输出混淆矩阵
print("混淆矩阵:")
print("TP:", TP)
print("FP:", FP)
print("TN:", TN)
print("FN:", FN)
```
阅读全文