pytorch不适用lstm()实现lstm
时间: 2024-05-02 08:15:36 浏览: 125
在 PyTorch 中,实现 LSTM 的方式有两种:使用 `nn.LSTM` 模块或手动实现。如果不想使用 `nn.LSTM` 模块实现 LSTM,可以手动编写 LSTM 的前向传播函数。下面是一个手动实现 LSTM 的示例代码:
```
import torch
class LSTM(torch.nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.W_i = torch.nn.Parameter(torch.Tensor(input_size, hidden_size))
self.U_i = torch.nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.b_i = torch.nn.Parameter(torch.Tensor(hidden_size))
self.W_f = torch.nn.Parameter(torch.Tensor(input_size, hidden_size))
self.U_f = torch.nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.b_f = torch.nn.Parameter(torch.Tensor(hidden_size))
self.W_c = torch.nn.Parameter(torch.Tensor(input_size, hidden_size))
self.U_c = torch.nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.b_c = torch.nn.Parameter(torch.Tensor(hidden_size))
self.W_o = torch.nn.Parameter(torch.Tensor(input_size, hidden_size))
self.U_o = torch.nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.b_o = torch.nn.Parameter(torch.Tensor(hidden_size))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def forward(self, x, h0=None, c0=None):
seq_len, batch_size, _ = x.size()
if h0 is None:
h0 = x.new_zeros(batch_size, self.hidden_size)
if c0 is None:
c0 = x.new_zeros(batch_size, self.hidden_size)
hiddens = []
for t in range(seq_len):
xt = x[t]
i_t = torch.sigmoid(xt @ self.W_i + h0 @ self.U_i + self.b_i)
f_t = torch.sigmoid(xt @ self.W_f + h0 @ self.U_f + self.b_f)
c_tilda_t = torch.tanh(xt @ self.W_c + h0 @ self.U_c + self.b_c)
c_t = f_t * c0 + i_t * c_tilda_t
o_t = torch.sigmoid(xt @ self.W_o + h0 @ self.U_o + self.b_o)
h_t = o_t * torch.tanh(c_t)
hiddens.append(h_t.unsqueeze(0))
h0, c0 = h_t, c_t
hiddens = torch.cat(hiddens, dim=0)
return hiddens, (h_t, c_t)
```
这个示例代码中,我们手动实现了 LSTM 的前向传播过程,包括输入门、遗忘门、细胞状态和输出门。这个实现与使用 `nn.LSTM` 模块的实现方式相似,但是需要手动计算 LSTM 的参数。
阅读全文