python pytorch实现 双向lstm预测
时间: 2023-07-11 19:51:22 浏览: 175
要使用双向LSTM进行预测,可以按照以下步骤进行实现:
1. 定义模型:使用`nn.LSTM`模块,并设置`bidirectional=True`,以创建双向LSTM模型。
```python
import torch.nn as nn
class BiLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(BiLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 初始化双向LSTM的隐状态h0和c0
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0)) # 输入x和(h0, c0)到双向LSTM中进行前向传播
out = self.fc(out[:, -1, :]) # 取最后一个时间步的输出,并通过全连接层进行预测
return out
```
2. 准备数据:准备训练集和测试集,并进行数据预处理。
```python
import torch
from torch.utils.data import Dataset, DataLoader
# 定义自定义数据集类
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x, y = self.data[index]
return torch.tensor(x, dtype=torch.float32), torch.tensor(y, dtype=torch.float32)
# 准备数据
train_data = [...] # 训练集
test_data = [...] # 测试集
train_dataset = MyDataset(train_data)
test_dataset = MyDataset(test_data)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
```
3. 训练模型:使用训练集对双向LSTM模型进行训练,并在测试集上进行验证。
```python
# 定义超参数
input_size = ... # 输入大小
hidden_size = ... # 隐藏层大小
num_layers = ... # LSTM层数
output_size = ... # 输出大小
batch_size = ... # 批量大小
num_epochs = ... # 训练轮数
learning_rate = ... # 学习率
# 初始化模型和优化器
model = BiLSTM(input_size, hidden_size, num_layers, output_size).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 测试模型
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy: {} %'.format(100 * correct / total))
```
在上述代码中,我们使用MSE损失函数和Adam优化器对模型进行训练,并使用测试集计算模型的准确率。在每个epoch中,我们打印出当前的损失值。
阅读全文