pytorch squeeze(-1)
时间: 2024-04-24 17:24:30 浏览: 182
在PyTorch中,squeeze(-1)的作用是去除最后一个维度值为1的维度。具体来说,如果一个张量的最后一个维度的大小为1,那么使用squeeze(-1)会将该维度去除。如果最后一个维度的大小不为1,则squeeze(-1)不会对张量产生任何影响。\[2\]
举个例子,假设有一个张量x,它的维度为(3, 1),即有3行1列。使用squeeze(-1)操作后,该张量的维度会变为(3,),即只有一维,且大小为3。\[3\]
希望这个解答对你有帮助!
#### 引用[.reference_title]
- *1* *2* *3* [Pytorch squeeze() unsqueeze() 用法](https://blog.csdn.net/weixin_43820352/article/details/125995034)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
相关问题
pytorch squeeze
PyTorch's `squeeze` function is used to remove dimensions of size 1 from a tensor. It returns a new tensor with the same data but with the specified dimensions removed. Here's an example:
```python
import torch
# Create a tensor with shape (1, 3, 1, 4)
x = torch.randn(1, 3, 1, 4)
print("Before squeeze:", x.shape)
# Squeeze the tensor
y = torch.squeeze(x)
print("After squeeze:", y.shape)
```
Output:
```
Before squeeze: torch.Size([1, 3, 1, 4])
After squeeze: torch.Size([3, 4])
```
In the example above, the `squeeze` function removes the dimensions of size 1 from the tensor `x`, resulting in a new tensor `y` with shape `(3, 4)`.
pytorch squeeze用法
pytorch中的squeeze函数可以将维度为1的维度去掉,例如将shape为(1, 3, 1, 2)的张量通过squeeze(dim=0)操作后,变成了shape为(3, 1, 2)的张量。如果不指定dim参数,则默认去掉所有维度为1的维度。下面是一个示例代码:
```
import torch
x = torch.randn(1, 3, 1, 2)
print(x.shape) # 输出 (1, 3, 1, 2)
y = torch.squeeze(x)
print(y.shape) # 输出 (3, 2)
z = torch.squeeze(x, dim=0)
print(z.shape) # 输出 (3, 1, 2)
```
阅读全文