code_list = [] # for i in range(len(time_new_list)): # code_list = code_list # history_time_list = history_time_list # while (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0): # history_time_list.insert(i, time_new_list[i]) # code_list.append(i) 优化代码
时间: 2024-01-11 07:02:58 浏览: 75
根据你提供的代码,我发现其中有一些不必要的语句,可以进行优化:
1. `code_list = code_list` 这一句没有任何作用,可以直接删除。
2. `history_time_list = history_time_list` 这一句也没有任何作用,可以删除。
3. `while (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0):` 可以使用 `if` 语句替代,因为这个循环只会执行一次。
经过优化后的代码如下所示:
```
code_list = []
for i in range(len(time_new_list)):
if (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0):
history_time_list.insert(i, time_new_list[i])
code_list.append(i)
```
这样做可以使代码更加简洁和易读。
相关问题
def data_processing(data): # 日期缺失,补充 data.fillna(method='ffill', inplace=True) date_history = pd.DataFrame(data.iloc[:, 0]) data_history = pd.DataFrame(data.iloc[:, 1]) date_history = np.array(date_history) data_history = [x for item in np.array(data_history).tolist() for x in item] # 缺失值处理 history_time_list = [] for date in date_history: date_obj = datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') #将字符串转为 datetime 对象 history_time_list.append(date_obj) start_time = history_time_list[0] # 起始时间 end_time = history_time_list[-1] # 结束时间 delta = datetime.timedelta(minutes=15) #时间间隔为15分钟 time_new_list = [] current_time = start_time while current_time <= end_time: time_new_list.append(current_time) current_time += delta # 缺失位置记录 code_list = [] for i in range(len(time_new_list)): code_list = code_list history_time_list = history_time_list while (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0): history_time_list.insert(i, time_new_list[i]) code_list.append(i) for i in code_list: data_history.insert(i, data_history[i - 1]) # 输出补充好之后的数据 data = pd.DataFrame({'date': time_new_list, 'load': data_history}) return data 代码优化
1. 可以将 `date_history` 和 `data_history` 的创建合并成一行:
```
date_history, data_history = np.array(data.iloc[:, 0]), [x for item in np.array(data.iloc[:, 1]).tolist() for x in item]
```
2. 可以在遍历 `date_history` 时,直接将字符串转为 datetime 对象,并添加到 `history_time_list` 中:
```
history_time_list = [datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') for date in date_history]
```
3. 在记录缺失位置时,可以用 `zip()` 函数将 `time_new_list` 和 `history_time_list` 同时遍历,这样会更加简洁:
```
code_list = []
for new_time, history_time in zip(time_new_list, history_time_list):
while (new_time - history_time) != datetime.timedelta(minutes=0):
history_time_list.insert(i, new_time)
code_list.append(i)
```
4. 可以使用 `pandas` 的 `interpolate()` 方法来进行缺失值插值,这样可以省去很多代码:
```
data = data.set_index('date').resample('15T').interpolate().reset_index()
```
综上所述,优化后的代码如下:
```
def data_processing(data):
data.fillna(method='ffill', inplace=True)
date_history, data_history = np.array(data.iloc[:, 0]), [x for item in np.array(data.iloc[:, 1]).tolist() for x in item]
history_time_list = [datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') for date in date_history]
start_time, end_time, delta = history_time_list[0], history_time_list[-1], datetime.timedelta(minutes=15)
time_new_list = [start_time + i * delta for i in range(int((end_time - start_time) / delta.total_seconds() / 60) + 1)]
data = pd.DataFrame({'date': time_new_list, 'load': data_history})
data = data.set_index('date').resample('15T').interpolate().reset_index()
return data
```
data.fillna(method='ffill', inplace=True) date_history,data_history = pd.DataFrame(data.iloc[:, 0]) data_history = pd.DataFrame(data.iloc[:, 1]) date_history = np.array(date_history) data_history = [x for item in np.array(data_history).tolist() for x in item] # 缺失值处理 history_time_list = [] for date in date_history: date_obj = datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') #将字符串转为 datetime 对象 history_time_list.append(date_obj) start_time = history_time_list[0] # 起始时间 end_time = history_time_list[-1] # 结束时间 delta = datetime.timedelta(minutes=15) #时间间隔为15分钟 time_new_list = [] current_time = start_time while current_time <= end_time: time_new_list.append(current_time) current_time += delta # 缺失位置记录 code_list = [] for i in range(len(time_new_list)): code_list = code_list history_time_list = history_time_list while (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0): history_time_list.insert(i, time_new_list[i]) code_list.append(i) for i in code_list: data_history.insert(i, data_history[i - 1]) # 输出补充好之后的数据 data = pd.DataFrame({'date': time_new_list, 'load': data_history}) return data 代码优化
以下是对代码的优化:
```python
data.fillna(method='ffill', inplace=True)
date_history, data_history = data.iloc[:, 0], data.iloc[:, 1:].values.flatten()
date_history = np.array([datetime.datetime.strptime(date, '%Y/%m/%d %H:%M') for date in date_history])
start_time, end_time = date_history[0], date_history[-1]
delta = datetime.timedelta(minutes=15)
time_new_list = []
current_time = start_time
while current_time <= end_time:
time_new_list.append(current_time)
current_time += delta
code_list = [i for i, date in enumerate(date_history) if date not in time_new_list]
for i in code_list:
data_history = np.insert(data_history, i, data_history[i - 1])
data = pd.DataFrame({'date': time_new_list, 'load': data_history})
return data
```
代码优化的主要思路是:
1. 将第二列数据展平成一维数组,避免后续操作需要用到的循环。
2. 将日期字符串转换为 datetime 对象。
3. 使用列表推导式生成时间序列。
4. 使用列表推导式生成缺失位置列表。
5. 使用 NumPy 的 `insert()` 方法在数据中插入缺失值。
6. 最后将补充好的数据转换为 DataFrame 返回。
这样可以使代码更加简洁、高效,并且减少不必要的循环。
阅读全文