moga算法的python代码示例
时间: 2024-03-17 14:39:13 浏览: 112
机器学习例子(Python代码)
5星 · 资源好评率100%
MOGA(多目标遗传算法)是一种用于解决多目标优化问题的进化算法。下面是一个简单的MOGA算法的Python代码示例:
```python
import random
# 定义目标函数
def objective_function(x):
return [x[0]**2, (x[0]-2)**2]
# 初始化种群
def initialize_population(population_size, num_variables):
population = []
for _ in range(population_size):
individual = [random.uniform(-5, 5) for _ in range(num_variables)]
population.append(individual)
return population
# 计算个体的适应度值
def calculate_fitness(individual):
objectives = objective_function(individual)
return objectives
# 非支配排序
def non_dominated_sort(population):
fronts = []
ranks = [0] * len(population)
domination_count = [0] * len(population)
dominated_solutions = [[] for _ in range(len(population))]
for i in range(len(population)):
for j in range(i+1, len(population)):
if dominates(population[i], population[j]):
domination_count[j] += 1
dominated_solutions[i].append(j)
elif dominates(population[j], population[i]):
domination_count[i] += 1
dominated_solutions[j].append(i)
if domination_count[i] == 0:
ranks[i] = 0
if i not in fronts:
fronts.append(i)
while fronts:
next_fronts = []
for i in fronts:
for j in dominated_solutions[i]:
domination_count[j] -= 1
if domination_count[j] == 0:
ranks[j] = ranks[i] + 1
if j not in next_fronts:
next_fronts.append(j)
fronts = next_fronts
return ranks
# 判断个体是否支配另一个个体
def dominates(individual1, individual2):
objectives1 = calculate_fitness(individual1)
objectives2 = calculate_fitness(individual2)
return all(obj1 <= obj2 for obj1, obj2 in zip(objectives1, objectives2)) and any(obj1 < obj2 for obj1, obj2 in zip(objectives1, objectives2))
# 选择操作
def selection(population, ranks, num_parents):
parents = []
while len(parents) < num_parents:
front = random.choice(ranks)
front_individuals = [i for i in range(len(population)) if ranks[i] == front]
best_individual = random.choice(front_individuals)
parents.append(population[best_individual])
return parents
# 交叉操作
def crossover(parents, offspring_size):
offspring = []
while len(offspring) < offspring_size:
parent1, parent2 = random.sample(parents, 2)
child = [random.uniform(min(gene1, gene2), max(gene1, gene2)) for gene1, gene2 in zip(parent1, parent2)]
offspring.append(child)
return offspring
# 变异操作
def mutation(offspring):
mutated_offspring = []
for individual in offspring:
mutated_individual = [gene + random.uniform(-0.5, 0.5) for gene in individual]
mutated_offspring.append(mutated_individual)
return mutated_offspring
# MOGA算法主函数
def moga_algorithm(population_size, num_variables, num_generations):
population = initialize_population(population_size, num_variables)
for _ in range(num_generations):
ranks = non_dominated_sort(population)
parents = selection(population, ranks, population_size//2)
offspring = crossover(parents, population_size - len(parents))
mutated_offspring = mutation(offspring)
population = parents + mutated_offspring
return population
# 测试MOGA算法
population_size = 100
num_variables = 1
num_generations = 50
final_population = moga_algorithm(population_size, num_variables, num_generations)
for individual in final_population:
print(f"Individual: {individual}, Fitness: {calculate_fitness(individual)}")
```
这是一个简单的MOGA算法的实现,其中包括目标函数的定义、种群初始化、适应度计算、非支配排序、选择、交叉和变异等操作。你可以根据自己的需求进行修改和扩展。希望对你有帮助!
阅读全文