def forward(self,x,t): for idx,embedding_layer in enumerate(self.step_embeddings): t_embedding = embedding_layer(t) x = self.linears[2*idx](x) x += t_embedding x = self.linears[2*idx+1](x) x = self.linears[-1](x) return x代码分析
时间: 2024-01-24 17:03:08 浏览: 112
rabbitMQ-demo.zip_DEMO_piguhw_rabbitMQ-demo_rabbitmq .idx
这段代码实现了一个神经网络的前向传播过程。该神经网络包含多个嵌入层和线性层,其中每个嵌入层对应一个时间步骤,每个线性层对应一个嵌入层和一个时间步骤的组合。
在前向传播过程中,输入数据x和时间步骤t被传入网络中。对于每个时间步骤,对应的嵌入层将时间步骤t进行嵌入,得到t_embedding。然后,输入数据x被传入对应的线性层,经过线性变换后与t_embedding进行加和,并再次经过线性变换得到输出。最终,所有时间步骤的输出被传入最后一个线性层,得到最终的输出结果。
需要注意的是,该神经网络的输入数据x和时间步骤t的形状需要与嵌入层和线性层的参数匹配。同时,该神经网络的输出结果的形状也需要与任务的要求匹配。
阅读全文