val rdd1 = sc.textFile("C:\\Users\\20430\\Desktop\\spark课设\\movies.dat").map(_.split("::")).map(x => (x(0), x(2)))
时间: 2023-07-06 19:42:50 浏览: 162
这段代码是Scala语言中的一段Spark代码,它的功能是读取指定路径下的`movies.dat`文件,并将其转换为一个RDD对象,其中每行数据按照`::`进行分隔,提取第1个和第3个字段,并以`(第1个字段, 第3个字段)`的形式作为RDD的每个元素。具体解释如下:
1. `val rdd1 = sc.textFile("C:\\Users\\20430\\Desktop\\spark课设\\movies.dat")`:使用`SparkContext`对象`sc`的`textFile()`方法读取指定路径下的`movies.dat`文件,并返回一个`RDD[String]`对象,其中每个元素表示文件中的一行数据。
2. `.map(_.split("::"))`:对RDD中的每个元素应用一个函数,将其按照`::`进行分隔,返回一个`Array[String]`对象。
3. `.map(x => (x(0), x(2)))`:对RDD中的每个元素应用一个函数,提取数组中的第1个和第3个元素,并返回一个二元组`(第1个元素, 第3个元素)`。
4. 最终得到一个`RDD[(String, String)]`对象,其中每个元素表示`movies.dat`文件中的一行数据,第1个元素表示电影的ID,第2个元素表示电影的类型。
需要注意的是,这段代码中使用了函数式编程的风格,使用了Spark中常用的一些转换操作,例如`map()`、`split()`等。同时,还涉及到文件的读取和解析操作,因此需要确保文件路径正确,并且文件内容符合预期格式。
相关问题
val rdd2 = sc.textFile("C:\\Users\\20430\\Desktop\\spark课设\\Ratings.dat").map(_.split("::")).map(x => (x(1), x(0))) //电影id,用户id val rdd3 = rdd1.join(rdd2) //笛卡尔积,电影id,电影类型,用户id val rdd4 = rdd3.map(x => (x._2._2, (x._1, x._2._1)))
这段代码主要是对电影评分数据进行处理,实现了电影评分数据的转换和组合。具体来说,代码第一行通过 `sc.textFile()` 方法将指定路径下的Ratings.dat文件以文本形式读入,然后通过 `map()` 方法对每一行进行切割,得到一个数组,其中数组的第1个元素是电影ID,第0个元素是用户ID。然后通过 `map()` 方法将每个元素转换成 Tuple 的形式,即 (movieId, userId)。
代码第二行是将电影数据和电影评分数据进行组合,通过 `join()` 方法将rdd1和rdd2进行笛卡尔积,得到rdd3。其中,rdd1是已经处理好的电影数据,每个元素是一个Tuple,形如 (movieId, movieType),rdd2是已经处理好的电影评分数据,每个元素是一个Tuple,形如 (movieId, userId)。
代码第三行是将rdd3中的元素进行转换,将元素的第二个元素作为新的Key,将元素的第一个元素和原来的第二个元素的第一个元素作为Value,构成一个新的Tuple。具体来说,rdd3中的每个元素都是一个Tuple,形如 (movieId, (movieType, userId)),其中movieId是电影ID,movieType是电影类型,userId是用户ID。通过 `map()` 操作,将每个元素的第二个元素 (movieType, userId) 作为新的Key,将每个元素的第一个元素 movieId 和原来的第二个元素的第一个元素 movieType 组成一个Tuple,作为新的Value,构成一个新的Tuple,即 (userId, (movieId, movieType))。返回一个新的RDD rdd4,其中每个元素都是一个Tuple,形如 (userId, (movieId, movieType))。
val userrdd = sc.textFile("C:\\Users\\20430\\Desktop\\spark课设\\users.dat").map(_.split("::")).map(x => (x(0), (x(1), x(2), x(3)))) //用户ID 用户性别 用户年龄 用户职业 val rdd5 = rdd4.join(userrdd) // rdd5.collect().foreach(println) val data: RDD[sex] = rdd5.map(x => sex(x._1, x._2._1._1, x._2._1._2, x._2._2._3, x._2._2._2, x._2._2._1)) import spark.implicits._ val df = data.toDF() //创建dataFrame df.createOrReplaceTempView("sex2") //临时表 val resultDF: DataFrame = spark.sql("select userid,movieid,labe,rating,zhiye,sex from sex2 lateral view explode(split(schema,'\\\\|')) tmp as labe") resultDF.coalesce(1).write.csv("C:\\Users\\20430\\Desktop\\spark课设\\输出") resultDF.show()
这段代码主要是将用户信息、电影信息和评分信息进行整合,并输出到CSV文件中。具体来说,代码第一行通过 `sc.textFile()` 方法将指定路径下的users.dat文件以文本形式读入,然后通过 `map()` 方法对每一行进行切割,得到一个数组,其中数组的第0个元素是用户ID,第1个元素是用户性别,第2个元素是用户年龄,第3个元素是用户职业。然后通过 `map()` 方法将每个元素转换成 Tuple 的形式,即 (userId, (userGender, userAge, userOccupation))。
代码第二行是将电影评分数据和用户信息进行组合,通过 `join()` 方法将rdd4和userrdd进行join操作,得到rdd5。其中,rdd4是已经处理好的电影评分数据和电影类型数据,每个元素是一个Tuple,形如 (userId, (movieId, rating)),userrdd是已经处理好的用户数据,每个元素是一个Tuple,形如 (userId, (userGender, userAge, userOccupation))。
代码第三行是将rdd5中的元素进行转换,将元素的各个部分提取出来,构成一个新的样例类sex的对象,其中sex样例类的各个属性分别对应用户ID、电影ID、评分、职业、性别和年龄。返回一个新的RDD data,其中每个元素都是一个sex对象。
代码第四行将RDD转换成DataFrame类型,然后为DataFrame创建一个名为sex2的临时表。
代码第五行是通过Spark SQL查询的方式,将sex2表展开,得到一个新的DataFrame resultDF,其中每个元素都是一个Tuple,形如 (userId, movieId, label, rating, occupation, gender)。其中,label是指电影类型,通过explode和split函数将sex2表中的schema列展开为多行,每行对应一个电影类型。结果将DataFrame输出到CSV文件中。
代码最后一行是将DataFrame以表格形式展示出来。
阅读全文