补充python代码# 计算调整间距后的数组形状 resize_factor = spacing / rescale new_real_shape = ____
时间: 2024-09-24 18:14:20 浏览: 43
MATLAB_Seam_Carving.zip_The Image_image resize_resize_seam_seam
5星 · 资源好评率100%
在计算调整间距后的数组形状时,我们需要将每个维度的间距乘以相应的缩放因子,然后四舍五入得到新的尺寸。假设`spacing`是一个包含三个元素的数组(分别对应x、y、z轴),`rescale`也是一个长度相同的数组,那么代码应该是这样的:
```python
new_real_shape = tuple(np.round(spacing[i] / rescale[i]) for i in range(len(spacing)))
```
这里使用了一个生成器表达式,依次对每个维度进行处理。
完整的补全代码:
```python
import numpy as np
from scipy import ndimage
rescale = [1, 1, 1]
ct_scans_shape = ct_scans.shape
print("原数组形状:", ct_scans_shape, " 切片厚度和像素间距:", spacing)
# 计算调整间距后的数组形状
resize_factor = spacing / rescale
new_real_shape = tuple(np.round(spacing[i] / rescale[i]) for i in range(len(spacing)))
# 四舍五入取整(还是float类型)
new_shape = list(new_real_shape)
# 根据取整后的数组形状求出缩放比例
real_resize_factor = resize_factor
# 得到调整后的间距
new_spacing = spacing / real_resize_factor
# 使用zoom函数根据比例进行缩放
new_ct_scans = ndimage.interpolation.zoom(ct_scans, real_resize_factor, mode="nearest")
new_ct_scans_shape = new_ct_scans.shape
print("新数组形状:", new_ct_scans_shape, " 切片厚度和像素间距:", new_spacing)
```
阅读全文