ECM-garch模型代码
时间: 2023-09-02 13:12:02 浏览: 285
R_garch模型R代码_
5星 · 资源好评率100%
以下是Python中实现ECM-GARCH模型的示例代码:
```python
import numpy as np
import pandas as pd
from statsmodels.tsa.stattools import adfuller
from arch import arch_model
def ecm_garch(data, lag_order, vol_model='GARCH', dist='normal'):
# 将数据处理为差分形式
data_diff = np.diff(data)
data_diff = np.insert(data_diff, 0, 0)
# 计算阶数
adf_result = adfuller(data_diff)
if adf_result[0] > adf_result[4]['5%']:
print('Error: time series is not stationary')
return
if lag_order is None:
lag_order = int(np.log(len(data_diff)))
# ECM模型
lag_data = np.vstack([np.roll(data_diff, i+1) for i in range(lag_order)]).T
lag_data = lag_data[lag_order:]
data_diff = data_diff[lag_order:]
b_hat = np.linalg.inv(lag_data.T @ lag_data) @ (lag_data.T @ data_diff)
resid = data_diff - lag_data @ b_hat
# GARCH模型
vol = arch_model(resid, vol=vol_model, dist=dist)
result = vol.fit(disp='off')
return result.params, b_hat, result.conditional_volatility
# 使用示例
data = pd.read_csv('data.csv')['price'].values
params, b_hat, vol = ecm_garch(data, lag_order=1, vol_model='GARCH', dist='normal')
print('ECM-GARCH模型参数:', params)
print('ECM模型参数:', b_hat)
print('条件波动率:', vol)
```
注意,这里使用了Python中的statsmodels和arch库,需要先安装这两个库。此外,需要将数据处理为差分形式。
阅读全文