多核高斯核函数的TCA的python代码
时间: 2023-11-12 18:12:39 浏览: 204
一种基于高斯核函数的python代码
以下是多核高斯核函数的TCA的Python代码:
```python
import numpy as np
def gaussian_kernel(X, Y, sigma):
"""
计算高斯核矩阵
:param X: numpy array, shape (n_samples_X, n_features)
:param Y: numpy array, shape (n_samples_Y, n_features)
:param sigma: float, 高斯核参数
:return: numpy array, shape (n_samples_X, n_samples_Y)
"""
n_samples_X = X.shape[0]
n_samples_Y = Y.shape[0]
K = np.zeros((n_samples_X, n_samples_Y))
for i in range(n_samples_X):
for j in range(n_samples_Y):
diff = X[i] - Y[j]
K[i, j] = np.exp(-np.dot(diff, diff) / (2 * sigma ** 2))
return K
def multi_kernel_TCA(Xs, sigma_list):
"""
多核TCA
:param Xs: list of numpy array, 每个numpy array的shape为(n_samples, n_features),表示源域数据
:param sigma_list: list of float, 每个float表示对应的高斯核参数
:return: list of numpy array, 每个numpy array的shape为(n_samples, n_components),表示TCA后的源域数据
"""
n_domains = len(Xs)
n_samples_list = [X.shape[0] for X in Xs]
n_samples = sum(n_samples_list)
n_features = Xs[0].shape[1]
H = np.zeros((n_samples, n_samples))
for i in range(n_domains):
Xi = Xs[i]
sigma_i = sigma_list[i]
Ki = gaussian_kernel(Xi, Xi, sigma_i)
n_samples_i = n_samples_list[i]
Hii = np.identity(n_samples_i) - np.ones((n_samples_i, n_samples_i)) / n_samples_i
Xi_centered = np.dot(Hii, Xi)
for j in range(i + 1, n_domains):
Xj = Xs[j]
sigma_j = sigma_list[j]
Kj = gaussian_kernel(Xj, Xj, sigma_j)
n_samples_j = n_samples_list[j]
Hjj = np.identity(n_samples_j) - np.ones((n_samples_j, n_samples_j)) / n_samples_j
Xj_centered = np.dot(Hjj, Xj)
Kij = gaussian_kernel(Xi, Xj, sigma_i)
Kji = gaussian_kernel(Xj, Xi, sigma_j)
Hij = np.zeros((n_samples_i, n_samples_j))
for k in range(n_samples_i):
for l in range(n_samples_j):
Hij[k, l] = -Kij[k, l] / (n_samples_i * n_samples_j)
Hji = np.zeros((n_samples_j, n_samples_i))
for k in range(n_samples_j):
for l in range(n_samples_i):
Hji[k, l] = -Kji[k, l] / (n_samples_i * n_samples_j)
H[np.ix_(range(sum(n_samples_list[:i]), sum(n_samples_list[:i+1])), range(sum(n_samples_list[:j]), sum(n_samples_list[:j+1])))] = Hij
H[np.ix_(range(sum(n_samples_list[:j]), sum(n_samples_list[:j+1])), range(sum(n_samples_list[:i]), sum(n_samples_list[:i+1])))] = Hji
H = np.dot(H, H)
eigvals, eigvecs = np.linalg.eig(H)
eigvals_sorted_indices = np.argsort(eigvals)[::-1]
eigvecs_sorted = eigvecs[:, eigvals_sorted_indices]
Zs = []
for i in range(n_domains):
Xi = Xs[i]
n_samples_i = n_samples_list[i]
Hi = np.identity(n_samples_i) - np.ones((n_samples_i, n_samples_i)) / n_samples_i
Xi_centered = np.dot(Hi, Xi)
Ki = gaussian_kernel(Xi_centered, Xi_centered, sigma_list[i])
Z = np.dot(Ki, eigvecs_sorted[:, :n_features])
Zs.append(Z)
return Zs
```
其中,multi_kernel_TCA函数实现了多核TCA算法,其中sigma_list是高斯核参数的列表,Xs是源域数据的列表,Zs是TCA后的源域数据的列表。需要注意的是,该代码只适用于两个源域的情况,如果需要扩展到多个源域,需要进一步修改。
阅读全文