with torch.no_grad():#结构内的不再反串梯度 # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy()
时间: 2023-05-12 10:03:31 浏览: 230
torch.cuda.is_available()返回False解决方案
5星 · 资源好评率100%
with torch.no_grad()是一个上下文管理器,用于在PyTorch中禁用梯度计算。在这个上下文中,所有的计算都不会被记录在计算图中,也不会对模型参数进行更新。这个上下文通常用于测试模型或者在模型参数已经确定的情况下进行预测。
阅读全文