Bert问答机器人用python进行数据训练的代码
时间: 2024-02-22 13:57:05 浏览: 129
以下是使用Python进行BERT问答模型训练的代码示例:
1. 首先,安装必要的Python库和BERT模型:
```python
!pip install transformers
!pip install torch
```
2. 加载并预处理训练数据:
```python
from transformers import BertTokenizer
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def preprocess_data(data):
inputs = []
answers = []
for qa in data:
input_text = qa['question'] + ' [SEP] ' + qa['context']
input_ids = tokenizer.encode(input_text)
answer_start = len(tokenizer.encode(qa['question']))
answer_end = answer_start + len(tokenizer.encode(qa['answer']))
answer = (answer_start, answer_end)
inputs.append(input_ids)
answers.append(answer)
return torch.tensor(inputs), torch.tensor(answers)
```
3. 定义BERT问答模型和训练过程:
```python
from transformers import BertForQuestionAnswering
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
def train(model, train_loader, optimizer, num_epochs):
for epoch in range(num_epochs):
for inputs, answers in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, answers)
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
train_data = [...] # 训练数据
train_inputs, train_answers = preprocess_data(train_data)
train_dataset = TensorDataset(train_inputs, train_answers)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, train_loader, optimizer, num_epochs=10)
```
4. 在训练完成后,可以使用模型进行预测:
```python
def predict(model, input_text):
input_ids = tokenizer.encode(input_text, return_tensors='pt')
outputs = model(input_ids)
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[0][answer_start:answer_end]))
return answer
```
以上就是使用Python进行BERT问答模型训练的基本代码示例。
阅读全文