可变多隐层神经网络的python实现
时间: 2023-11-05 19:59:05 浏览: 74
很高兴回答你的问题!以下是可变多隐层神经网络的Python实现:
```python
import numpy as np
class VariableMLP:
def __init__(self, input_dim, num_hidden_layers, hidden_layer_sizes, output_dim):
self.input_dim = input_dim
self.num_hidden_layers = num_hidden_layers
self.hidden_layer_sizes = hidden_layer_sizes
self.output_dim = output_dim
self.weights = []
self.biases = []
# Initialize weights and biases for each layer
prev_size = input_dim
for i in range(num_hidden_layers):
size = hidden_layer_sizes[i]
layer_weights = np.random.rand(prev_size, size)
layer_biases = np.random.rand(size)
self.weights.append(layer_weights)
self.biases.append(layer_biases)
prev_size = size
# Initialize weights and biases for output layer
layer_weights = np.random.rand(prev_size, output_dim)
layer_biases = np.random.rand(output_dim)
self.weights.append(layer_weights)
self.biases.append(layer_biases)
def forward(self, x):
# Feed forward through each layer
for i in range(self.num_hidden_layers):
x = np.dot(x, self.weights[i]) + self.biases[i]
x = self.relu(x)
output = np.dot(x, self.weights[-1]) + self.biases[-1]
return output
def relu(self, x):
return np.maximum(0, x)
```
希望能够帮助到您!如果您还有其他问题,请随时问我。
阅读全文