这段代码s1.setObjective(gp.quicksum((pi[i]*bnewplan1[q][i] for q in range(m))for i in range(numpatient) ),GRB.MAXIMIZE) 报错TypeError: unsupported operand type(s) for +=: 'gurobipy.LinExpr' and 'generator'应该怎么解决

时间: 2024-04-15 21:28:52 浏览: 12
这个错误发生是因为你正在尝试将一个生成器对象与 `gurobipy.LinExpr` 对象相加,这是不支持的操作。 要解决这个问题,你需要对生成器对象进行求和操作,以将其转换为 `gurobipy.LinExpr` 对象。可以使用 `sum()` 函数对生成器进行求和,并将其结果赋值给一个变量,然后再将该变量与 `gurobipy.LinExpr` 对象相加。 以下是修改后的代码示例: ```python expr = sum((pi[i]*bnewplan1[q][i] for q in range(m)) for i in range(numpatient)) s1.setObjective(expr, GRB.MAXIMIZE) ``` 这样,你将生成器对象转换为了 `expr` 变量,并将其与 `gurobipy.LinExpr` 对象相加,避免了报错。请确保在使用 `gurobipy` 之前正确导入相应的模块。
相关问题

代码sp1obj = gp.quicksum(pi[i]*bnewplan1[q][i] for q in range(m) for i in range(numpatient)) 报错 KeyError: 0是啥意思

在 Gurobi 的 Python 接口中,`KeyError` 错误通常表示你试图使用不存在的键来访问字典。在你的代码中,`KeyError: 0` 的意思是出现了一个键错误,而这个错误发生在尝试使用索引 `0` 来访问 `bnewplan1` 列表时。 根据你的代码,我注意到 `bnewplan1` 是一个二维列表,其中每个元素都是一个变量。因此,在创建变量 `bnewplan1` 的循环中,你需要为每个变量指定一个唯一的名称,而不是共享相同的名称。 以下是修改后的代码示例: ```python # 定义变量 bnewplan1 = [] for q in range(m): bnewplan1.append([]) for i in range(numpatient): bnewplan1[q].append(s1.addVar(vtype='B', name=f'bnewplan1_{q}_{i}')) ``` 在这个示例中,我为每个变量指定了一个唯一的名称,使用了 f-string 来生成变量的名称。通过为每个变量指定唯一的名称,你应该能够解决 `KeyError: 0` 错误。 请注意,你在目标函数 `sp1obj` 中使用了这些变量,确保在目标函数中使用正确的变量名称。 如果问题仍然存在,请提供更多代码上下文,以便我可以更好地帮助你解决问题。

这个代码def sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence): s1 = gp.Model("sp1") m=5 # 定义变量 bnewplan1 = [] for q in range(m): bnewplan1.append([]) for i in range(numpatient): bnewplan1[q].append(s1.addVar(vtype='B', name='bnewplan1')) s1._x = bnewplan1 #设置约束条件 s1.setObjective(np.sum(pi[i]*bnewplan1[q][i] for i in range(numpatient) for q in range(m)),GRB.MAXIMIZE) s1.addConstrs(gp.quicksum(bnewplan1[q][i]*normal_mean[i] for i in range(numpatient)) +80-optime<=0 for q in range(m)) # 定义回调函数来捕获可行解 global feasible_solutions feasible_solutions = [] def mycallback(s1, where = None): bnewplan1= s1._x if where == GRB.Callback.MIPSOL: x_sol = s1.cbGetSolution(bnewplan1) feasible_solutions.append(x_sol) # 设置回调函数 s1.optimize(mycallback) # 打印所有可行解 for sol in feasible_solutions: # m = len(feasible_solutions) print('sol',sol) return sol sol = sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence)中报错UnboundLocalError: local variable 'sol' referenced before assignment该怎么解决

在你的代码中,`sol` 是在 `for sol in feasible_solutions` 循环中进行赋值的,但是如果 `feasible_solutions` 是空的,循环将不会执行,因此 `sol` 没有被赋值就被引用了,导致报错。 为了解决这个问题,你可以在定义 `sol` 之前初始化它,并在循环结束后检查是否有可行解被找到,然后再返回 `sol`。参考下面的代码修改: ```python def sp1(pi, perovertimecost, normal_mean, numpatient, patient_sequence): s1 = gp.Model("sp1") m = 5 # 定义变量 bnewplan1 = [] for q in range(m): bnewplan1.append([]) for i in range(numpatient): bnewplan1[q].append(s1.addVar(vtype='B', name='bnewplan1')) s1._x = bnewplan1 # 设置约束条件 s1.setObjective(np.sum(pi[i] * bnewplan1[q][i] for i in range(numpatient) for q in range(m)), GRB.MAXIMIZE) s1.addConstrs(gp.quicksum(bnewplan1[q][i] * normal_mean[i] for i in range(numpatient)) + 80 - optime <= 0 for q in range(m)) # 定义回调函数来捕获可行解 global feasible_solutions feasible_solutions = [] def mycallback(s1, where=None): bnewplan1 = s1._x if where == GRB.Callback.MIPSOL: x_sol = s1.cbGetSolution(bnewplan1) feasible_solutions.append(x_sol) # 设置回调函数 s1.optimize(mycallback) # 检查是否有可行解被找到 if len(feasible_solutions) > 0: sol = feasible_solutions[-1] # 最后一个可行解 print('sol', sol) return sol else: print('No feasible solutions found.') return None sol = sp1(pi, perovertimecost, normal_mean, numpatient, patient_sequence) ``` 在这个修改后的代码中,我在循环之前初始化了 `sol`,并在循环结束后检查了 `feasible_solutions` 的长度,如果大于0,则将最后一个可行解赋值给 `sol`。如果没有找到可行解,将返回 `None`。 请根据你的具体需求进行适当的修改,并确保在调用 `sp1` 函数时,至少能找到一个可行解。

相关推荐

最新推荐

recommend-type

2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12.pdf

2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 ...
recommend-type

LPC55S1x_LPC551x Data Sheet中文版.docx

LPC55S1x / LPC551x32位Arm Cortex®-M33, TrustZone, PRINCE, CASPER, 96kb 存储器;256kb闪存,USB HS, Flexcomm接口,CAN FD, 32位计数器/定时器,SCTimer/PWM, PLU, 16位2.0 ADC,比较器,温度传感器,AES, PUF...
recommend-type

Java_带有可选web的开源命令行RatioMaster.zip

Java_带有可选web的开源命令行RatioMaster
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不