transformer源代码
时间: 2023-10-02 21:13:56 浏览: 133
Transformer模型的源代码如下所示:
```python
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.encoder = Encoder() # 编码层
self.decoder = Decoder() # 解码层
self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) # 输出层
def forward(self, enc_inputs, dec_inputs):
# 这里有两个数据进行输入,一个是enc_inputs 形状为[batch_size, src_len],主要是作为编码段的输入
# 一个dec_inputs,形状为[batch_size, tgt_len],主要是作为解码端的输入
# 以下是转置代码
q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2)
# 输出dec_outputs[batch_size, tgt_len, d_model] positionalEncodding位置编码
```
相关问题
Transformer源代码
Transformer是一种基于自注意力机制的神经网络模型,用于序列到序列的任务,如机器翻译、文本摘要等。以下是Transformer的PyTorch源代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim, num_layers, num_heads, dropout):
super().__init__()
self.embedding = nn.Embedding(input_dim, hidden_dim)
self.pos_encoding = PositionalEncoding(hidden_dim, dropout)
self.layers = nn.ModuleList([TransformerLayer(hidden_dim, num_heads, dropout) for _ in range(num_layers)])
self.fc_out = nn.Linear(hidden_dim, output_dim)
def forward(self, src):
# src: [batch_size, src_len]
embedded = self.embedding(src) * math.sqrt(self.hidden_dim)
embedded = self.pos_encoding(embedded)
for layer in self.layers:
embedded = layer(embedded)
output = self.fc_out(embedded[:, 0])
return output
class TransformerLayer(nn.Module):
def __init__(self, hidden_dim, num_heads, dropout):
super().__init__()
self.self_attn = MultiHeadAttention(hidden_dim, num_heads)
self.norm1 = nn.LayerNorm(hidden_dim)
self.ff = FeedForward(hidden_dim)
self.norm2 = nn.LayerNorm(hidden_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, src):
# src: [batch_size, src_len, hidden_dim]
attn_output, _ = self.self_attn(src, src, src)
src = self.norm1(src + self.dropout(attn_output))
ff_output = self.ff(src)
src = self.norm2(src + self.dropout(ff_output))
return src
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_dim, num_heads):
super().__init__()
self.hidden_dim = hidden_dim
self.num_heads = num_heads
self.head_dim = hidden_dim // num_heads
self.fc_q = nn.Linear(hidden_dim, hidden_dim)
self.fc_k = nn.Linear(hidden_dim, hidden_dim)
self.fc_v = nn.Linear(hidden_dim, hidden_dim)
self.fc_o = nn.Linear(hidden_dim, hidden_dim)
def forward(self, query, key, value):
# query: [batch_size, query_len, hidden_dim]
# key: [batch_size, key_len, hidden_dim]
# value: [batch_size, value_len, hidden_dim]
batch_size = query.shape[0]
Q = self.fc_q(query).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, query_len, head_dim]
K = self.fc_k(key).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, key_len, head_dim]
V = self.fc_v(value).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # [batch_size, num_heads, value_len, head_dim]
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim) # [batch_size, num_heads, query_len, key_len]
attn_probs = F.softmax(attn_scores, dim=-1)
attn_output = torch.matmul(self.dropout(attn_probs), V) # [batch_size, num_heads, query_len, head_dim]
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_dim) # [batch_size, query_len, hidden_dim]
output = self.fc_o(attn_output)
return output, attn_probs
class FeedForward(nn.Module):
def __init__(self, hidden_dim):
super().__init__()
self.fc1 = nn.Linear(hidden_dim, hidden_dim * 4)
self.fc2 = nn.Linear(hidden_dim * 4, hidden_dim)
def forward(self, src):
# src: [batch_size, src_len, hidden_dim]
output = F.relu(self.fc1(src))
output = self.fc2(output)
return output
class PositionalEncoding(nn.Module):
def __init__(self, hidden_dim, dropout, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(dropout)
pe = torch.zeros(max_len, hidden_dim)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, hidden_dim, 2).float() * (-math.log(10000.0) / hidden_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# x: [batch_size, seq_len, hidden_dim]
x = x + self.pe[:x.size(1), :]
return self.dropout(x)
```
swin transformer源代码
Swin Transformer是一种基于Transformer架构的模型,它特别适用于处理密集型视觉任务,如图像分类、目标检测和分割等。它的核心创新在于引入了“窗口卷积”(Windowed Self-Attention),将自注意力计算限制在局部窗口内,这有助于减少计算量并提高效率。
Swin Transformer的源代码通常可以在GitHub上找到,比如来自原作者的研究团队——MILVUS Lab的官方仓库。最著名的实现可能是Hugging Face的transformers库中的`swin_transformer`模块,这是一个开源项目,你可以通过访问https://github.com/microsoft/Swin-Transformer 或 https://huggingface.co/docs/transformers/model_doc/swin查看其代码结构和详细信息。
要在本地运行或研究Swin Transformer,你可能需要对Python、PyTorch或TensorFlow有一定的了解,并能够解析模型层、训练循环以及相关的配置文件。如果你打算使用,记得先安装必要的依赖库。
阅读全文