transformer代码逐行注释
时间: 2024-12-27 16:19:25 浏览: 15
### 带有详细注释的Transformer代码实现
以下是基于PyTorch框架的一个简化版本的Transformer模型,其中包含了详细的中文注释帮助理解每一部分的功能:
```python
import torch.nn as nn
import math
class Transformer(nn.Module):
"""定义一个简单的Transformer类"""
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1):
super(Transformer, self).__init__()
# 初始化编码器层
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers)
# 初始化解码器层
decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout)
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_decoder_layers)
# 定义源嵌入矩阵和目标嵌入矩阵
self.src_embedding = nn.Embedding(vocab_size, d_model)
self.tgt_embedding = nn.Embedding(vocab_size, d_model)
# 输出线性变换
self.out_linear = nn.Linear(d_model, vocab_size)
# 对输入数据应用位置编码
self.positional_encoding = PositionalEncoding(d_model, max_len=max_seq_length)
# 使用均匀分布初始化参数
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src, tgt, src_mask=None, tgt_mask=None):[^2]
"""
:param src: 输入序列 (batch_size, seq_len_src)
:param tgt: 目标序列 (batch_size, seq_len_tgt)
:param src_mask: 源序列掩码 (seq_len_src, seq_len_src),可选
:param tgt_mask: 目标序列掩码 (seq_len_tgt, seq_len_tgt),可选
"""
# 将索引转换成词向量并加上位置编码
src_embedded = self.positional_encoding(self.src_embedding(src))
tgt_embedded = self.positional_encoding(self.tgt_embedding(tgt))
# 编码过程
memory = self.encoder(src_embedded, mask=src_mask)
# 解码过程
output = self.decoder(tgt_embedded, memory, tgt_mask=tgt_mask, memory_mask=src_mask)
# 应用最终的全连接层得到预测结果
logits = self.out_linear(output)
return logits
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0)]
return x
```
此段代码实现了基础的Transformer架构,并通过`forward()`方法完成了前向传播的过程。注意这里的`vocab_size` 和 `max_seq_length` 需要在实例化对象之前设定好。
阅读全文