transformer代码github
时间: 2025-01-06 17:38:45 浏览: 5
### 关于Transformer模型的代码实现
在GitHub上可以找到许多关于Transformer模型的具体实现。下面是一个基于PyTorch框架构建的标准Transformer模型实例[^1]。
```python
import torch.nn as nn
import torch
class TransformerModel(nn.Module):
def __init__(self, input_dim, model_dim, num_heads, num_encoder_layers, num_decoder_layers, dim_feedforward, output_dim, dropout=0.1):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.pos_encoder = PositionalEncoding(model_dim, dropout)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=model_dim, nhead=num_heads, dim_feedforward=dim_feedforward, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_encoder_layers)
self.decoder_layer = nn.TransformerDecoderLayer(d_model=model_dim, nhead=num_heads, dim_feedforward=dim_feedforward, dropout=dropout)
self.transformer_decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=num_decoder_layers)
self.embedding = nn.Embedding(input_dim, model_dim)
self.fc_out = nn.Linear(model_dim, output_dim)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc_out.bias.data.zero_()
self.fc_out.weight.data.uniform_(-initrange, initrange)
def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None,
tgt_key_padding_mask=None, memory_key_padding_mask=None):
src = self.embedding(src) * math.sqrt(self.d_model)
src = self.pos_encoder(src)
memory = self.transformer_encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
output = self.transformer_decoder(tgt=self.embedding(tgt), memory=memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
output = self.fc_out(output)
return output
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
```
此段代码定义了一个完整的Transformer架构,包含了编码器和解码器部分,并且实现了位置编码功能以及掩码机制来处理序列数据中的依赖关系。
阅读全文