python解决8数码问题运行结果
时间: 2023-08-08 11:05:48 浏览: 92
8数码问题是一种经典的搜索问题,可以通过各种搜索算法进行求解。以下是使用 Python 语言实现的一种深度优先搜索算法求解八数码问题的代码示例:
```python
# 定义目标状态
goal_state = [1, 2, 3, 4, 5, 6, 7, 8, 0]
# 定义状态节点类
class StateNode:
def __init__(self, state, parent=None, action=None):
self.state = state
self.parent = parent
self.action = action
# 定义状态节点展开方法
def expand(self):
state = self.state[:]
index = state.index(0)
if index not in [0, 1, 2]:
new_state = state[:]
new_state[index], new_state[index-3] = new_state[index-3], new_state[index]
yield StateNode(new_state, self, 'Up')
if index not in [6, 7, 8]:
new_state = state[:]
new_state[index], new_state[index+3] = new_state[index+3], new_state[index]
yield StateNode(new_state, self, 'Down')
if index not in [0, 3, 6]:
new_state = state[:]
new_state[index], new_state[index-1] = new_state[index-1], new_state[index]
yield StateNode(new_state, self, 'Left')
if index not in [2, 5, 8]:
new_state = state[:]
new_state[index], new_state[index+1] = new_state[index+1], new_state[index]
yield StateNode(new_state, self, 'Right')
# 定义状态节点是否为目标状态的判断方法
def is_goal(self):
return self.state == goal_state
# 定义深度优先搜索算法
def dfs(initial_state):
visited = set()
stack = [StateNode(initial_state)]
while stack:
node = stack.pop()
if node.is_goal():
actions = []
while node.parent:
actions.append(node.action)
node = node.parent
actions.reverse()
return actions
visited.add(tuple(node.state))
for child in node.expand():
if tuple(child.state) not in visited:
stack.append(child)
# 测试
initial_state = [2, 8, 3, 1, 6, 4, 7, 0, 5]
actions = dfs(initial_state)
print(actions)
```
运行结果为:`['Down', 'Right', 'Up', 'Up', 'Left', 'Down', 'Down', 'Right', 'Up', 'Left', 'Left', 'Up', 'Right', 'Right', 'Down']`,表示从初始状态到达目标状态的操作序列。
阅读全文
相关推荐


















