用tensorflow的layers.Layer模块改写 class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio = 4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out)
时间: 2024-03-12 19:49:07 浏览: 209
以下是使用tensorflow的layers.Layer模块改写的代码:
```
import tensorflow as tf
class ChannelAttention(tf.keras.layers.Layer):
def __init__(self, in_planes, ratio=4):
super(ChannelAttention, self).__init__()
self.avg_pool = tf.keras.layers.GlobalAveragePooling2D()
self.max_pool = tf.keras.layers.GlobalMaxPooling2D()
self.fc1 = tf.keras.layers.Conv2D(filters=in_planes // ratio, kernel_size=1, strides=1, padding='same')
self.relu1 = tf.keras.layers.ReLU()
self.fc2 = tf.keras.layers.Conv2D(filters=in_planes, kernel_size=1, strides=1, padding='same')
self.sigmoid = tf.keras.layers.Activation('sigmoid')
def call(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = tf.add(avg_out, max_out)
return self.sigmoid(out)
```
同样需要注意的是,tensorflow中没有nn.Module这个概念,而是使用tf.keras.layers.Layer作为基类。在类定义中加入`tf.keras.layers.Layer`,并对一些函数名称进行修改。另外,由于在`ChannelAttention`类中使用了`GlobalAveragePooling2D`和`GlobalMaxPooling2D`函数,因此需要保证tensorflow的版本在2.0以上。在`ChannelAttention`的`__init__`函数中,使用了`GlobalAveragePooling2D`和`GlobalMaxPooling2D`函数分别对输入数据进行global average pooling和global max pooling操作,然后使用`Conv2D`函数构建全连接层,并使用ReLU激活函数进行非线性变换,最后再构建一个全连接层,并使用sigmoid函数进行归一化。在`ChannelAttention`的`call`函数中,使用了`add`函数对两个分支的输出进行相加。
阅读全文