class BufferedSequential(nn.Module): def __init__(self, layers, buffer_or_not): super(BufferedSequential, self).__init__() self.layers = layers self.buffer_or_not = buffer_or_not self.n_buffers = np.sum(buffer_or_not) def parameters(self): return [param for layer in self.layers for param in layer.parameters()] def forward(self, x): if not isinstance(x, Variable): if not isinstance(x, torch.Tensor): x = torch.Tensor(x) x = Variable(x) self.buffer = [] for layer, is_buffered in zip(self.layers, self.buffer_or_not): x = layer(x) if is_buffered: self.buffer.append(x) return x

时间: 2024-02-14 22:31:06 浏览: 27
这段代码定义了一个名为 `BufferedSequential` 的自定义神经网络模块。它接受两个参数:`layers` 和 `buffer_or_not`。`layers` 是一个包含多个层的列表,`buffer_or_not` 是一个布尔值的列表,用于指示每个层是否需要缓存输出。 在 `__init__` 方法中,它首先调用父类的 `__init__` 方法进行初始化,然后将传入的 `layers` 和 `buffer_or_not` 参数保存在对象的属性中。`n_buffers` 属性是通过统计 `buffer_or_not` 列表中为 True 的元素数量来计算的。 `parameters` 方法返回模块中所有层的参数。它通过遍历 `layers` 列表和每个层的参数,将所有参数收集到一个列表中并返回。 `forward` 方法定义了前向传播的逻辑。它接受输入 `x` 并将其转换为 `torch.Tensor` 类型的变量。然后,它创建了一个空的列表 `self.buffer` 用于存储缓存的输出。 接下来,它使用 `zip` 函数迭代 `layers` 和 `buffer_or_not` 列表,并对每个层进行前向传播。如果当前层需要缓存输出,则将输出添加到 `self.buffer` 列表中。 最后,它返回最后一个层的输出 `x`。 这段代码的作用是在神经网络模型中,允许选择性地缓存某些层的输出,以便后续的操作可以使用这些缓存的值。
相关问题

class LinearMaskedCoupling(nn.Module): """ Coupling Layers """ def __init__(self, input_size, hidden_size, n_hidden, mask, cond_label_size=None): super().__init__() # stored in state_dict, but not trained & not returned by nn.parameters(); similar purpose as nn.Parameter objects # this is because tensors won't be saved in state_dict and won't be pushed to the device self.register_buffer('mask', mask) # 0,1,0,1 # scale function # for conditional version, just concat label as the input into the network (conditional way of SRMD) s_net = [nn.Linear(input_size + (cond_label_size if cond_label_size is not None else 0), hidden_size)] for _ in range(n_hidden): s_net += [nn.Tanh(), nn.Linear(hidden_size, hidden_size)] s_net += [nn.Tanh(), nn.Linear(hidden_size, input_size)] self.s_net = nn.Sequential(*s_net) # translation function, the same structure self.t_net = copy.deepcopy(self.s_net) # replace Tanh with ReLU's per MAF paper for i in range(len(self.t_net)): if not isinstance(self.t_net[i], nn.Linear): self.t_net[i] = nn.ReLU() def forward(self, x, y=None): # apply mask mx = x * self.mask # run through model log_s = self.s_net(mx if y is None else torch.cat([y, mx], dim=1)) t = self.t_net(mx if y is None else torch.cat([y, mx], dim=1)) u = mx + (1 - self.mask) * (x - t) * torch.exp( -log_s) # cf RealNVP eq 8 where u corresponds to x (here we're modeling u) log_abs_det_jacobian = (- (1 - self.mask) * log_s).sum( 1) # log det du/dx; cf RealNVP 8 and 6; note, sum over input_size done at model log_prob return u, log_abs_det_jacobian 帮我解析代码

这段代码定义了一个名为LinearMaskedCoupling的类,该类继承自nn.Module。LinearMaskedCoupling是一种coupling层,用于在流式生成模型中实现可逆转换。下面对代码进行解析: 在__init__方法中,有以下几个参数: - input_size:输入数据的维度大小 - hidden_size:隐藏层的维度大小 - n_hidden:隐藏层的数量 - mask:掩码,用于指定哪些输入特征是要保留的(值为1),哪些是要忽略的(值为0) - cond_label_size:条件标签的维度大小,用于条件版本的生成(可选参数,默认为None) 在__init__方法中,首先调用父类nn.Module的构造函数super().__init__()。然后使用register_buffer方法注册了一个名为mask的缓冲区(buffer),用于存储掩码。这样做的目的是将mask保存在模型的state_dict中,但不作为需要训练的参数返回。 接下来定义了scale function和translation function。两者具有相同的结构,都是由一系列线性层和激活函数组成。其中,scale function用于计算尺度参数log_s,translation function用于计算平移参数t。 在forward方法中,首先根据掩码对输入x进行掩码操作,得到mx。然后根据是否有条件标签y,将mx与y进行拼接,作为输入传递给scale function和translation function,分别计算尺度参数log_s和平移参数t。 最后,根据RealNVP论文中的公式,通过对mx进行逆变换操作,得到u。同时计算对数绝对行列式的Jacobian矩阵(log_abs_det_jacobian)。 最终,函数返回u和log_abs_det_jacobian。

import torch class Network(torch.nn.Module):     def __init__(self, n_fft=1024, n_hop=160, n_hidden=1024):         super().__init__()         self.linear1 = torch.nn.LSTM(n_fft//2+1, n_hidden//2, num_layers=2, batch_first=True, bidirectional=True)         self.linear2 = torch.nn.Linear(n_hidden, n_fft//2+1)         self.n_fft = n_fft         self.n_hop = n_hop         # self.window =         self.register_buffer('window', torch.hann_window(n_fft))     def forward(self, noisy):         # 傅里叶变换         noisy_spec = torch.stft(noisy, self.n_fft, self.n_hop, window=self.window, return_complex=True) # [B,C,T]         noisy_amplitude = torch.abs(noisy_spec).transpose(2,1) # [B,T,C=513]         # 神经网络计算         hidden = self.linear1(noisy_amplitude)[0] # [B,T,n_hidden=1024]         mask = self.linear2(hidden).sigmoid() # [B,T,C=513] (0,1)         # 降噪结果         denoise_spec = noisy_spec * mask.transpose(2,1)         denoise_wav = torch.istft(denoise_spec, self.n_fft, self.n_hop, window=self.window)         # 返回降噪后波形和降噪后谱图         return  denoise_wav, denoise_spec if __name__ == "__main__":     net = Network()     clean = torch.randn(4, 16000)     noise = torch.randn(4, 16000)     denoise_wav, denoise_spec = net(clean + noise)     print(denoise_spec.shape, denoise_wav.shape)

这段代码实现了一个基于LSTM的音频降噪网络,其核心思路是使用LSTM对音频信号的幅度谱进行处理,从而得到一个掩膜(mask),该掩膜可以在频域上降噪信号。具体来说,该网络的输入是含有噪声的干净音频信号,经过傅里叶变换得到幅度谱,之后通过LSTM计算得到一个掩膜,最后将该掩膜应用于幅度谱上,得到降噪后的幅度谱,再通过逆傅里叶变换得到降噪后的音频信号。 具体来说,该网络包括以下几个部分: - `__init__`函数:定义了一个两层的LSTM网络和一个线性层(用于将LSTM输出的隐藏状态转换为掩膜),并初始化了窗函数等参数。 - `forward`函数:实现了整个网络的前向传播过程。首先对输入信号进行傅里叶变换,得到幅度谱,之后将幅度谱通过LSTM处理得到一个掩膜,再将该掩膜应用于幅度谱上,得到降噪后的幅度谱,最后通过逆傅里叶变换得到降噪后的音频信号。 - `if __name__ == "__main__"`:对网络的功能进行测试,输入为一个随机产生的4秒钟的干净音频信号和一个随机产生的4秒钟的噪声信号,输出为降噪后的幅度谱和音频信号。 需要注意的是,由于该网络使用了LSTM,其计算成本较高,需要在计算资源允许的情况下使用。此外,该网络的性能也取决于数据集的质量和训练过程的参数设置等因素。

相关推荐

class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。