用pytorch写MNIST手写数字识别的代码

时间: 2023-04-06 11:03:59 浏览: 41
我可以回答这个问题。以下是一个使用PyTorch实现MNIST手写数字识别的代码示例: ``` import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载MNIST数据集 train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64 * 12 * 12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 定义模型、损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 测试模型 def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, 11): train(epoch) test() ``` 这个代码使用了一个卷积神经网络来对MNIST手写数字进行分类。在训练过程中,使用了随机梯度下降优化器和交叉熵损失函数。在测试过程中,计算了模型的准确率和平均损失。

相关推荐

可以使用PyTorch实现MNIST手写数字识别。MNIST是一个常用的手写数字数据集,包含60000个训练样本和10000个测试样本,每个样本都是28x28像素的灰度图像。以下是实现步骤: 1. 导入必要的库和数据集 python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 加载MNIST数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) # 创建数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True) 2. 定义模型 python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) model = Net() 3. 定义损失函数和优化器 python criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=.01, momentum=.5) 4. 训练模型 python def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == : print('Train Epoch: {} [{}/{} ({:.f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) for epoch in range(1, 11): train(epoch) 5. 测试模型 python def test(): model.eval() test_loss = correct = with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) test() 以上就是使用PyTorch实现MNIST手写数字识别的步骤。
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别。MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) 第二步是构建模型。在MNIST手写数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于手写数字识别非常有用。 python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别。mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别的代码: python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) 以上就是一个基于PyTorch的mnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。
以下是基于PyTorch的MNIST手写数字识别的步骤: 1.导入必要的库 python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms 2.定义数据预处理操作 python transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) 3.加载数据集 python train_data = datasets.MNIST(root='data', train=True, download=True, transform=transform) test_data = datasets.MNIST(root='data', train=False, download=True, transform=transform) 4.定义数据加载器 python batch_size = 64 train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True) 5.定义模型 python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*7*7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.conv2(x)) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = nn.functional.relu(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) model = Net() 6.定义优化器和损失函数 python learning_rate = 0.01 optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.5) criterion = nn.CrossEntropyLoss() 7.训练模型 python epochs = 10 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx*len(data), len(train_loader.dataset), 100.*batch_idx/len(train_loader), loss.item())) 8.测试模型 python test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), accuracy)) 这就是基于PyTorch的MNIST手写数字识别的步骤。
好的,我可以回答这个问题。以下是用 PyTorch 实现 MNIST 手写数字识别的代码和注释: 首先,我们需要导入必要的库: python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms 然后,我们定义一些超参数: python batch_size = 64 learning_rate = .01 num_epochs = 10 接着,我们定义数据预处理的方法: python transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((.1307,), (.3081,)) ]) 这里我们使用了 transforms.ToTensor() 将图像转换为张量,并使用 transforms.Normalize() 对张量进行归一化处理。 接下来,我们加载 MNIST 数据集: python train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True) 然后,我们使用 DataLoader 将数据集转换为可迭代的数据加载器: python train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) 接下来,我们定义一个简单的卷积神经网络模型: python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) 这里我们使用了两个卷积层和两个全连接层。 接下来,我们定义损失函数和优化器: python model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) 然后,我们开始训练模型: python for epoch in range(num_epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == : print('Train Epoch: {} [{}/{} ({:.f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) 最后,我们测试模型的准确率: python model.eval() test_loss = correct = with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) 这就是用 PyTorch 实现 MNIST 手写数字识别的代码和注释。
你好,以下是mnist手写数字识别的PyTorch代码: import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # 定义数据预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((.5,), (.5,))]) # 加载数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # 定义神经网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=.001, momentum=.9) # 训练网络 for epoch in range(2): # 多次循环数据集 running_loss = . for i, data in enumerate(trainloader, ): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 正向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() if i % 200 == 1999: # 每200个小批量数据打印一次 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = . print('Finished Training') # 测试网络 correct = total = with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size() correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) 希望对你有所帮助!
import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms# 载入MNIST数据集 train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# 创建DataLoader加载数据 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)# 创建模型 class CNNModel(nn.Module): def __init__(self): super(CNNModel, self).__init__() # 卷积层 self.cnn1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2) self.relu1 = nn.ReLU() # 最大池化层 self.maxpool1 = nn.MaxPool2d(kernel_size=2) # 全连接层 self.fc1 = nn.Linear(16*7*7, 10) def forward(self, x): # 卷积、激活、最大池化 out = self.cnn1(x) out = self.relu1(out) out = self.maxpool1(out) # 扁平化 out = out.view(out.size(0), -1) # 全连接层 out = self.fc1(out) return out# 实例化模型 model = CNNModel()# 损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01)# 训练模型 for epoch in range(2): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) # 计算损失函数 loss = criterion(outputs, labels) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch : %d/%d, Iter : %d/%d, Loss: %.4f' %(epoch+1, 2, i+1, len(train_dataset)//100, loss.item()))# 测试模型 correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum()print('10000张图片的准确率为: %d %%' % (100 * correct / total))
下面是一个简单的 PyTorch 实现 MNIST 手写数字识别的代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 batch_size = 64 learning_rate = 0.01 num_epochs = 10 # 下载和加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) # 创建数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.pool = nn.MaxPool2d(2) self.fc = nn.Linear(320, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 320) x = self.fc(x) return x # 实例化模型和损失函数 model = Net() criterion = nn.CrossEntropyLoss() # 使用随机梯度下降优化器 optimizer = optim.SGD(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将数据加载到 GPU 中 images = images.cuda() labels = labels.cuda() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每 100 个批次输出一次日志信息 if (i + 1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: # 将数据加载到 GPU 中 images = images.cuda() labels = labels.cuda() # 计算输出并获取预测结果 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计正确预测的数量 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 这个代码使用了一个简单的卷积神经网络,包括两个卷积层、两个最大池化层和一个全连接层。训练过程中使用随机梯度下降优化器,测试过程中计算模型的准确率。
MNIST是深度学习领域的一个经典数据集,包含了手写数字0-9的灰度图像,每张图像的尺寸为28×28像素。基于这个数据集,我们可以训练一个模型来实现手写数字的识别。 下面是一个基于PyTorch实现的MNIST手写数字识别代码的分析: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms 首先,我们需要导入PyTorch及其相关的库,其中包括了神经网络相关的模块、优化器模块、数据处理模块等。 python transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) 接着,我们对MNIST数据集进行预处理,将其转化为一个可用于训练的数据集和测试集,并进行标准化处理。 python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.pool = nn.MaxPool2d(2) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 320) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x 然后,我们定义了一个卷积神经网络模型。这个模型包括了两个卷积层和两个全连接层,其中卷积层用于提取图像特征,而全连接层则用于分类任务。 python net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) 接着,我们定义了损失函数和优化器,其中损失函数采用交叉熵损失,优化器采用随机梯度下降(SGD)方法。 python for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') 最后,我们使用训练集对模型进行训练,并在每个epoch结束时输出损失值。训练完成后,我们可以使用测试集来评估模型的性能。 这就是一个基于PyTorch实现的MNIST手写数字识别代码的分析。通过这个例子,我们可以了解到如何使用PyTorch来构建、训练和评估一个深度学习模型。
我可以回答这个问题。以下是一个使用 PyTorch 实现手写数字识别 MNIST 数据集的代码示例: import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor()) # 定义训练参数 batch_size = 64 learning_rate = 0.01 momentum = 0.5 # 定义优化器和损失函数 model = Net() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) criterion = nn.CrossEntropyLoss() # 训练模型 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) epochs = 10 for epoch in range(epochs): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('Epoch: {}, Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( epoch, test_loss, correct, len(test_loader.dataset), accuracy)) 这个代码实现了一个卷积神经网络,用于对 MNIST 数据集中的手写数字进行分类。训练过程中使用了随机梯度下降优化器和交叉熵损失函数。在训练结束后,输出了测试集上的平均损失和准确率。
好的,下面是一个简单的示例代码,使用PyTorch实现MNIST手写数字识别: python import torch import torch.nn as nn import torch.optim as optim import torchvision from torchvision import datasets, transforms # 加载数据集 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) testset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.fc1 = nn.Linear(64*5*5, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = x.view(-1, 64*5*5) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) net = Net() # 定义优化器和损失函数 optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5) criterion = nn.NLLLoss() # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 在这个示例中,我们首先使用torchvision加载MNIST数据集,并对数据进行标准化处理。然后我们定义了一个包含两个卷积层和两个全连接层的神经网络,使用ReLU作为激活函数,并使用负对数似然损失作为损失函数,优化器使用SGD。接着我们训练模型并测试模型的准确率。
### 回答1: PyTorch是一种用于深度学习的开源框架,可用于手写数字识别MNIST数据集。 MNIST数据集包含手写数字的图像和标签,可用于训练和评估深度学习模型。通过使用PyTorch和MNIST数据集,可以构建和训练一个用于识别手写数字的模型。 ### 回答2: ### 回答3: PyTorch是一个非常流行的开源机器学习框架,它支持使用Python编程语言来构建深度学习模型。在本问题中,我们要使用PyTorch来实现手写数字识别MNIST。 MNIST是一个非常著名的手写数字数据集,它包含了60000个训练样本和10000个测试样本。每张图片的大小是28x28像素,每个像素的值在0~255之间,表示灰度值。手写数字识别MNIST任务的目标是训练一个模型,输入一张黑白图片,输出它表示的数字。 下面是使用PyTorch实现MNIST的大致流程: 1. 下载MNIST数据集,使用PyTorch内置的dataset和dataloader来加载数据。 2. 构建一个神经网络模型,可以使用PyTorch提供的nn.Module和nn.Sequential搭建模型。在本例中,我们可以构建一个简单的卷积神经网络模型。 3. 定义损失函数,一般使用交叉熵损失函数。 4. 定义优化器,如Adam或SGD等。 5. 进行训练,即在数据集上反复迭代地进行前向传播和反向传播过程,更新模型的参数,使得损失函数最小化。可以使用PyTorch提供的自动微分机制来进行反向传播。 6. 在测试集上测试模型的精度,可以使用PyTorch提供的测试函数来对模型进行评估。 下面给出一个简单的示例代码框架: # 导入PyTorch和相关库 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据转换器 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='data', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_dataset = datasets.MNIST(root='data', train=False, transform=transform, download=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True) # 构建神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(1600, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 定义模型、损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(10): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 测试模型 model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) 这段代码定义了一个包含两个卷积层和两个全连接层的卷积神经网络模型,使用交叉熵损失函数和Adam优化器来进行训练。在每个训练周期中,程序会遍历整个训练集,进行参数更新;在训练结束后,程序会在测试集上进行测试,计算模型的精度。 总的来说,使用PyTorch实现手写数字识别MNIST是一个非常典型的深度学习问题,这个例子也展示了如何使用PyTorch进行模型构建、数据处理和训练测试。通过这个例子,我们可以更好地了解深度学习的基本流程和PyTorch的使用方法,也可以为我们后续的深度学习项目提供一些参考。
PyTorch可以用来实现MNIST数字识别。MNIST是一个手写数字数据集,包含60,000个训练样本和10,000个测试样本。以下是实现MNIST数字识别的步骤: 1. 导入必要的库和数据集 import torch import torchvision import torchvision.transforms as transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((.5,), (.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) 2. 定义神经网络模型 import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() 3. 定义损失函数和优化器 import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=.001, momentum=.9) 4. 训练模型 for epoch in range(10): # loop over the dataset multiple times running_loss = . for i, data in enumerate(trainloader, ): # get the inputs; data is a list of [inputs, labels] inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 200 == 1999: # print every 200 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = . print('Finished Training') 5. 测试模型 correct = total = with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size() correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) 以上就是用PyTorch实现MNIST数字识别的步骤。
要使用PyTorch对MNIST手写数字图像进行分类,你可以按照以下步骤进行操作: 1. 首先,使用PyTorch定义ResNet50网络模型。ResNet50是一种深度卷积神经网络,适用于图像分类任务。 2. 接下来,使用PyTorch加载MNIST数据集。PyTorch提供了方便的数据加载工具,你可以使用torchvision.datasets.MNIST函数加载MNIST数据集。如果是第一次运行代码,PyTorch会自动下载数据集。 3. 在加载数据集之后,你可以对数据进行一些预处理操作。例如,可以使用torchvision.transforms.Compose函数将多个转换操作组合在一起,比如将图像转换为Tensor,并进行标准化。 4. 接着,你可以创建训练数据加载器和测试数据加载器。可以使用torch.utils.data.DataLoader函数来创建数据加载器。训练数据加载器用于训练模型,测试数据加载器用于评估模型的性能。你可以指定批量大小、是否打乱数据等参数。 5. 然后,你可以使用定义好的网络模型、数据加载器和损失函数,进行训练过程。训练过程中,可以使用优化器(如SGD或Adam)来更新模型的参数,并计算损失值。训练过程中可以显示损失值的变化情况。 总结起来,对于MNIST手写数字图像分类的PyTorch代码,你需要定义ResNet50网络模型,加载MNIST数据集,进行数据预处理,创建训练和测试数据加载器,并进行训练过程。 请注意,上述步骤只是一个大致的框架,具体的代码实现可能会有所不同。你可以根据自己的需求和实际情况对代码进行调整和修改。123 #### 引用[.reference_title] - *1* [Resnet50卷积神经网络训练MNIST手写数字图像分类 Pytorch训练代码](https://download.csdn.net/download/baidu_36499789/87418795)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [用PyTorch实现MNIST手写数字识别(非常详细)](https://blog.csdn.net/sxf1061700625/article/details/105870851)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
好的,以下是一个简单的PyTorch手写数字识别代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 定义训练参数 batch_size = 64 learning_rate = 0.01 momentum = 0.5 epochs = 10 # 加载数据集 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义模型和优化器 model = Net() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) # 训练模型 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 测试模型 model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += nn.functional.nll_loss(output, target, size_average=False).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) 这个代码使用了PyTorch深度学习框架来训练一个手写数字识别模型。我们使用了MNIST数据集,它包含了大量的手写数字图像和对应的标签。我们定义了一个卷积神经网络模型,使用了两个卷积层和两个全连接层。我们使用SGD优化器来训练模型,并使用nll_loss()方法来计算损失。最后,我们使用argmax()方法来预测测试集,并使用sum()方法来计算准确率。
好的,以下是一段 PyTorch 实现的手写数字识别的代码: python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) # 加载数据集,进行数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # 初始化网络,定义损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练网络 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999:

最新推荐

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

基于Asp的工厂设备管理系统源码.zip

基于Asp的工厂设备管理系统源码.zip

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

javascript 中字符串 变量

在 JavaScript 中,字符串变量可以通过以下方式进行定义和赋值: ```javascript // 使用单引号定义字符串变量 var str1 = 'Hello, world!'; // 使用双引号定义字符串变量 var str2 = "Hello, world!"; // 可以使用反斜杠转义特殊字符 var str3 = "It's a \"nice\" day."; // 可以使用模板字符串,使用反引号定义 var str4 = `Hello, ${name}!`; // 可以使用 String() 函数进行类型转换 var str5 = String(123); //

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

css怎么写隐藏下拉列表

您可以使用 CSS 中的 display 属性来隐藏下拉列表。具体方法是: 1. 首先,在 HTML 中找到您想要隐藏的下拉列表元素的选择器。例如,如果您的下拉列表元素是一个 select 标签,则可以使用以下选择器:`select { }` 2. 在该选择器中添加 CSS 属性:`display: none;`,即可将该下拉列表元素隐藏起来。 例如,以下是一个隐藏下拉列表的 CSS 代码示例: ```css select { display: none; } ``` 请注意,这将隐藏所有的 select 元素。如果您只想隐藏特定的下拉列表,请使用该下拉列表的选择器来替代 sel

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.