yolov5里test.py的运行代码
时间: 2023-08-06 08:04:23 浏览: 115
你可以使用以下代码来运行Yolov5的test.py脚本:
```python
import torch
import argparse
import yaml
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import check_img_size, non_max_suppression, scale_coords
from utils.plots import plot_one_box
from utils.torch_utils import select_device
def run_yolov5_test(weights, img_size=640):
# 设置设备
device = select_device('')
# 模型加载
model = attempt_load(weights, map_location=device)
imgsz = check_img_size(img_size, s=model.stride.max())
# 数据加载
dataset = LoadImages('path/to/your/images', img_size=imgsz)
# 推理
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# 推理
pred = model(img)[0]
pred = non_max_suppression(pred, 0.4, 0.5)
# 可视化
for det in pred:
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0s.shape).round()
for *xyxy, conf, cls in reversed(det):
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0s, label=label, color=colors[int(cls)], line_thickness=3)
# 显示图像
cv2.imshow('image', im0s)
cv2.waitKey(0)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='path to weights file')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
args = parser.parse_args()
run_yolov5_test(args.weights, args.img_size)
```
请确保根据你的实际情况修改所需的路径和参数。还要记得在运行之前安装所需的依赖,你可以在Yolov5的官方GitHub页面中找到更多关于运行测试脚本的详细说明。
阅读全文