yolov7 test.py

时间: 2024-02-02 11:02:50 浏览: 32
对不起,我无法运行实际的代码。但是,我可以为您提供关于使用YOLOv7进行目标检测的一般指导。 首先,确保您已经安装了必要的依赖项和库,例如Python、OpenCV和PyTorch。然后,按照以下步骤进行操作: 1. 下载YOLOv7的源代码。您可以在GitHub上找到许多不同版本的实现。 2. 准备数据集和标注文件。您需要一个包含图像和对应标注的数据集,标注通常以XML或JSON格式保存。 3. 配置模型参数。根据您的需求,您可能需要调整模型的配置文件,例如输入图像尺寸、类别数、训练参数等。 4. 进行模型训练。使用数据集和标注文件对模型进行训练。您可以选择从头开始训练,或者使用预训练模型进行迁移学习。 5. 进行测试和推理。在测试阶段,您可以使用训练好的模型对新的图像进行目标检测。编写一个脚本(例如test.py)来加载模型并对图像进行推理。 请注意,以上只是一般步骤,并且可能因YOLOv7实现的不同而有所差异。确保仔细阅读所选实现的文档和示例代码,并根据您的需求进行适当的调整。
相关问题

yolov7 test.py是干嘛的

引用\[1\]:根据你提供的信息,yolov7 test.py是用于测试模型的脚本。在你的情况下,你意识到使用test.py测试数据时出现了问题,因为它使用的是训练时划分的验证集中的数据,而不是你想要的测试数据。你正确地意识到应该使用detect.py来进行测试,因为detect.py中预设了不同形式数据的检测接口,包括视频流、图片地址和视频文件等等。通过使用detect.py,你成功地得到了你想要的结果。\[1\] 问题: yolov7 test.py是干嘛的? 回答: yolov7 test.py是用于测试模型的脚本。它可以用于检测和评估训练好的yolov7模型在给定数据集上的性能。然而,在你的情况下,你意识到使用test.py测试数据时出现了问题,因为它使用的是训练时划分的验证集中的数据,而不是你想要的测试数据。因此,你正确地使用了detect.py来进行测试,并成功地得到了你想要的结果。\[1\] #### 引用[.reference_title] - *1* [yoloV7中test.py和train.py的区别](https://blog.csdn.net/weixin_41942424/article/details/125996214)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [YOLOv7教程系列:一、基于自定义数据集训练专属于自己的目标检测模型(保姆级教程,含数据集预处理),包含...](https://blog.csdn.net/weixin_45921929/article/details/126448031)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

yolov7 test.py详解

YoloV7是目标检测算法YOLO的最新版本,相较于之前的版本,它在模型结构、训练策略和速度等方面都有了较大的改进。test.py文件是用于测试已经训练好的模型的脚本,下面是对test.py文件的详细解释: 1. 导入必要的库和模块 ```python import argparse import os import platform import shutil import time from pathlib import Path import cv2 import torch import torch.backends.cudnn as cudnn import numpy as np from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import check_img_size, check_requirements, check_imshow, \ non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging from utils.plots import plot_one_box from utils.torch_utils import select_device, load_classifier, time_synchronized ``` 这里导入了一些必要的库和模块,比如PyTorch、OpenCV、NumPy等,以及用于测试的模型、数据集和一些工具函数。 2. 定义输入参数 ```python parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='data/images', help='source') parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') opt = parser.parse_args() ``` 这里使用Python的argparse库来定义输入参数,包括模型权重文件、输入数据源、推理尺寸、置信度阈值、NMS阈值等。 3. 加载模型 ```python # 加载模型 model = attempt_load(opt.weights, map_location=device) # load FP32 model imgsz = check_img_size(opt.img_size, s=model.stride.max()) # check img_size if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once ``` 这里使用`attempt_load()`函数来加载模型,该函数会根据传入的权重文件路径自动选择使用哪个版本的YoloV7模型。同时,这里还会检查输入图片的大小是否符合模型的要求。 4. 设置计算设备 ```python # 设置计算设备 device = select_device(opt.device) half = device.type != 'cpu' # half precision only supported on CUDA # Initialize model model.to(device).eval() ``` 这里使用`select_device()`函数来选择计算设备(GPU或CPU),并将模型移动到选择的设备上。 5. 加载数据集 ```python # 加载数据集 if os.path.isdir(opt.source): dataset = LoadImages(opt.source, img_size=imgsz) else: dataset = LoadStreams(opt.source, img_size=imgsz) ``` 根据输入参数中的数据源,使用`LoadImages()`或`LoadStreams()`函数来加载数据集。这两个函数分别支持从图片文件夹或摄像头/视频中读取数据。 6. 定义类别和颜色 ```python # 定义类别和颜色 names = model.module.names if hasattr(model, 'module') else model.names colors = [[np.random.randint(0, 255) for _ in range(3)] for _ in names] ``` 这里从模型中获取类别名称,同时为每个类别随机生成一个颜色,用于在图片中绘制框和标签。 7. 定义输出文件夹 ```python # 定义输出文件夹 save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if opt.save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir ``` 这里使用`increment_path()`函数来生成输出文件夹的名称,同时创建相应的文件夹。 8. 开始推理 ```python # 开始推理 for path, img, im0s, vid_cap in dataset: t1 = time_synchronized() # 图像预处理 img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() img /= 255.0 if img.ndimension() == 3: img = img.unsqueeze(0) # 推理 pred = model(img)[0] # 后处理 pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # 处理结果 for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], f'{i}: ', im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(save_dir / p.name) txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{counter}') + '.txt' if det is not None and len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() for *xyxy, conf, cls in reversed(det): c = int(cls) label = f'{names[c]} {conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors[c], line_thickness=3) if opt.save_conf: with open(txt_path, 'a') as f: f.write(f'{names[c]} {conf:.2f}\n') if opt.save_crop: w = int(xyxy[2] - xyxy[0]) h = int(xyxy[3] - xyxy[1]) x1 = int(xyxy[0]) y1 = int(xyxy[1]) x2 = int(xyxy[2]) y2 = int(xyxy[3]) crop_img = im0[y1:y2, x1:x2] crop_path = save_path + f'_{i}_{c}.jpg' cv2.imwrite(crop_path, crop_img) # 保存结果 if opt.nosave: pass elif dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0) # 打印结果 print(f'{s}Done. ({t2 - t1:.3f}s)') # 释放资源 if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration elif cv2.waitKey(1) == ord('p'): # p to pause cv2.waitKey(-1) ``` 这里使用一个循环来遍历数据集中的所有图像或视频帧,对每张图像或视频帧进行以下操作: - 图像预处理:将图像转换为PyTorch张量,并进行归一化和类型转换。 - 推理:将图像张量传入模型进行推理,得到预测结果。 - 后处理:对预测结果进行非极大值抑制、类别筛选等后处理操作,得到最终的检测结果。 - 处理结果:对每个检测框进行标签和颜色的绘制,同时可以选择保存检测结果的图片或视频以及标签信息的TXT文件。 - 释放资源:根据按键输入决定是否退出或暂停程序。 9. 总结 以上就是YoloV7的测试脚本test.py的详细解释,通过这个脚本可以方便地测试已经训练好的模型,并对检测结果进行可视化和保存等操作。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩