更改上述代码,使目标值 set 小于等于2时,将输出直接设置为输入的目标值

时间: 2024-02-25 19:58:16 浏览: 29
可以在函数内部添加一个判断语句来实现该功能。修改后的函数定义如下: ```c int speed_pid() { int e = -1, ec = -2.6; static PID pid = {0.02, 0.3, 0}; static int sumE = 0; static int lastE = 0; PID OUT = {0, 0, 0}; e = set - DATE; ec = e - lastE; sumE += e; lastE = e; // 判断目标值是否小于等于2,如果是则将输出设置为目标值 if (set <= 2) { return set; } // 目标值大于2,进行模糊控制和比例积分微分控制 OUT = fuzzy(e, ec); return (pid.Kp + OUT.Kp) * e + (pid.Kd + OUT.Kd) * ec + (pid.Ki + OUT.Ki) * sumE; } ``` 在函数内部,首先判断目标值 `set` 是否小于等于2,如果是则将输出设置为目标值,直接返回作为最终的控制量。如果目标值大于2,则进行模糊控制和比例积分微分控制,将最终的控制量返回。
相关问题

用C语言写段代码设定timer0定时器输出固定频率占空比可变PWM

### 回答1: 首先,需要使用AVR库中的头文件,包括`<avr/io.h>`和`<avr/interrupt.h>`。 然后,需要在代码中定义输出PWM的端口号和占空比。在下面的代码中,我们将使用PORTB的第0个端口,并设置占空比为50%: ```c #define PWM_PORT PORTB #define PWM_DDR DDRB #define PWM_PIN 0 #define PWM_DUTY 128 // 占空比为50% ``` 接下来,需要配置timer0定时器。下面的代码使用了8位定时器,并设置了时钟频率为8MHz,PWM频率为2kHz。 ```c void timer0_init(void) { TCCR0A |= (1 << WGM00) | (1 << WGM01); // 设置为Fast PWM模式 TCCR0A |= (1 << COM0A1); // 设置为非反相输出 TCCR0B |= (1 << CS01); // 设置时钟频率为8MHz/8 = 1MHz OCR0A = PWM_DUTY; // 设置占空比 } ``` 最后,需要在代码的主函数中初始化PWM端口和timer0定时器,并开启中断,如下所示: ```c int main(void) { PWM_DDR |= (1 << PWM_PIN); // 设置PWM端口为输出模式 timer0_init(); // 初始化timer0定时器 sei(); // 开启中断 while (1) { // 此处可以添加其他代码 } return 0; } ``` 注意:如果需要改变占空比 ### 回答2: 要使用C语言编写代码来设置timer0定时器并实现可变占空比的PWM输出,你可以按照以下步骤进行操作: 1. 首先,需要包含与目标芯片相关的头文件,例如: ```c #include <stdint.h> //引入标准整型头文件 #include <avr/io.h> //引入AVR IO头文件 ``` 2. 设置timer0的工作模式为“Fast PWM”模式,并设定计数器的上限值: ```c TCCR0A = (1 << WGM00) | (1 << WGM01); //设定timer0的工作模式为Fast PWM TCCR0A |= (1 << COM0A1); //设置Output Compare非常数模式 TCCR0B = (1 << CS00); //使timer0工作于no prescaling模式(频率为F_CPU) OCR0A = 0xFF; // 设置计数器上限值 ``` 3. 设置PWM的占空比,这里假设占空比是从0%到100%: ```c OCR0B = duty_cycle * 2.55; // 设置OCR0B寄存器的值为对应占空比的数值 ``` 4. 最后,启动计数器并开始PWM输出: ```c TCCR0A |= (1 << COM0B1); // 开启PWM输出 ``` 完整的代码如下所示: ```c #include <stdint.h> #include <avr/io.h> void PWM_init() { TCCR0A = (1 << WGM00) | (1 << WGM01); //设置timer0的工作模式为Fast PWM TCCR0A |= (1 << COM0B1); //设置Output Compare非常数模式 TCCR0B = (1 << CS00); //使timer0工作于no prescaling模式(频率为F_CPU) OCR0A = 0xFF; // 设置计数器上限值 } void PWM_set_duty_cycle(uint8_t duty_cycle) { OCR0B = duty_cycle * 2.55; // 设置OCR0B的值为对应占空比的数值 } int main() { PWM_init(); PWM_set_duty_cycle(50); // 设置占空比为50% while (1) { } return 0; } ``` 上述代码会初始化timer0,并将占空比设置为50%。你可以根据需要,在主循环中使用`PWM_set_duty_cycle()`函数更改占空比的值。请记住,代码中的一些寄存器名和操作可能会根据不同的芯片而有所不同,请根据你使用的芯片的手册进行调整。 ### 回答3: 用C语言编写的代码如下: ```c #include <reg52.h> sbit PWM_PIN = P1^0; // 设置PWM输出引脚 void Timer0Init() { TMOD |= 0x01; // 设置定时器0为模式1,16位定时器,工作方式为定时器 TH0 = 0xFC; // 设置定时器初值,用于产生10ms的定时周期 TL0 = 0x18; TR0 = 1; // 启动定时器0 ET0 = 1; // 允许定时器0中断 EA = 1; // 允许总中断 } void Timer0Interrupt() interrupt 1 { // 定时器中断服务程序 static unsigned int count = 0; // 计数器 count++; if (count <= 500) { PWM_PIN = 1; // 控制PWM输出引脚为高电平 } else { PWM_PIN = 0; // 控制PWM输出引脚为低电平 } if (count == 1000) { count = 0; // 复位计数器 } } void main() { Timer0Init(); while (1) { // 主程序空闲部分 } } ``` 以上代码设置了定时器0为模式1,定时周期为10ms。在定时器中断服务程序中,使用静态变量`count`作为计数器,当`count`小于等于500时,将PWM输出引脚设置为高电平,否则设置为低电平。这样就实现了固定频率占空比可变的PWM输出。

arduino麦克纳姆小车超声波避障代码

Arduino麦克纳姆小车超声波避障代码主要是通过使用超声波模块检测小车前方是否有障碍物,根据检测结果控制小车移动方向,避开障碍物。 程序的逻辑是,首先引入必要的库文件和定义相关的变量,然后在SETUP函数中对各个引脚进行初始化和设置。在LOOP函数中,使用超声波模块检测距离和方向,如果检测到前方有障碍物,则根据障碍物位置和传感器误差偏差调整小车的方向,使其避开障碍物。 具体的代码实现可以参考以下示例: #include <AFMotor.h> //引入motor驱动库文件 #define trigPin 13 //定义超声波信号输出引脚 tringPin #define echoPin 12 //定义超声波信号输入引脚 echoPin float pingTime; //定义超声波测量时间变量 float targetDistance; //定义目标距离 AF_DCMotor motor1(1); //定义电机引脚 AF_DCMotor motor2(2); AF_DCMotor motor3(3); AF_DCMotor motor4(4); void setup() { Serial.begin(9600); //设置波特率 pinMode(trigPin, OUTPUT); //定义超声波信号输出引脚为输出模式 pinMode(echoPin, INPUT); //定义超声波信号输入引脚为输入模式 motor1.setSpeed(200); //设置电机转速 motor2.setSpeed(200); motor3.setSpeed(200); motor4.setSpeed(200); } void loop() { digitalWrite(trigPin, LOW); //先使输出信号为0 delayMicroseconds(2); digitalWrite(trigPin, HIGH); //输出10us的高电平脉冲 delayMicroseconds(10); digitalWrite(trigPin, LOW); pingTime = pulseIn(echoPin, HIGH); //读取超声波信号输入引脚高电平的宽度 targetDistance = pingTime * 0.034 / 2; //根据声速计算距离,声速为340m/s Serial.println(targetDistance); //输出检测到的距离值 if (targetDistance < 10) { //如果距离小于10cm,说明前面有障碍物 motor1.run(RELEASE); //停止电机 motor2.run(RELEASE); motor3.run(RELEASE); motor4.run(RELEASE); delay(100); if (targetDistance < 5) { //如果距离小于5cm,则后退 motor1.run(BACKWARD); motor2.run(BACKWARD); motor3.run(BACKWARD); motor4.run(BACKWARD); delay(500); motor1.run(RELEASE); //停止电机 motor2.run(RELEASE); motor3.run(RELEASE); motor4.run(RELEASE); delay(100); motor1.run(FORWARD); //向右转 motor2.run(FORWARD); motor3.run(BACKWARD); motor4.run(BACKWARD); delay(500); } else { //如果距离小于10cm,大于5cm,向右转 motor1.run(FORWARD); motor2.run(FORWARD); motor3.run(BACKWARD); motor4.run(BACKWARD); delay(500); } } else { //如果距离大于10cm,则直行前进 motor1.run(FORWARD); motor2.run(FORWARD); motor3.run(FORWARD); motor4.run(FORWARD); } } 以上代码是一个简单的Arduino麦克纳姆小车超声波避障代码示例,需要根据具体硬件配置和需求进行适当修改和调整。

相关推荐

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)修改代码使得显示决策树模型以及多分类的roc曲线和auc值

最新推荐

recommend-type

js获取input标签的输入值实现代码

input标签的输入值通过js进行获取,部分标签和类是封装在框架内的,其效果和html标签差不多,具体实现如下,感兴趣的朋友可以参考下,希望对大家有所帮助
recommend-type

java 输入一个数字组成的数组(输出该数组的最大值和最小值)

主要介绍了java 输入一个数字组成的数组,输出该数组的最大值和最小值,需要的朋友可以参考下
recommend-type

Python 实现输入任意多个数,并计算其平均值的例子

今天小编就为大家分享一篇Python 实现输入任意多个数,并计算其平均值的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python弹出输入框并获取输入值的实例

今天小编就为大家分享一篇Python弹出输入框并获取输入值的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

shell脚本之判断输入参数是否为整数值的实例

今天小编就为大家分享一篇shell脚本之判断输入参数是否为整数值的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。