滑动窗口残差统计法matlab代码
时间: 2023-09-26 21:10:58 浏览: 114
下面是一个使用滑动窗口残差统计法的 MATLAB 代码示例:
```matlab
function residuals = slidingWindowResiduals(data, windowSize)
% 输入:
% - data: 输入的数据向量
% - windowSize: 滑动窗口的大小
% 输出:
% - residuals: 残差向量
% 确定数据长度和窗口数量
dataLength = length(data);
numWindows = floor(dataLength / windowSize);
% 初始化残差向量
residuals = zeros(dataLength, 1);
for i = 1:numWindows
% 提取当前窗口的数据
windowData = data((i-1)*windowSize + 1 : i*windowSize);
% 计算当前窗口的残差
windowMean = mean(windowData);
residuals((i-1)*windowSize + 1 : i*windowSize) = windowData - windowMean;
end
% 处理最后一个窗口
lastWindowSize = dataLength - (numWindows * windowSize);
if lastWindowSize > 0
lastWindowData = data(numWindows*windowSize + 1 : end);
lastWindowMean = mean(lastWindowData);
residuals(numWindows*windowSize + 1 : end) = lastWindowData - lastWindowMean;
end
end
```
这段代码实现了滑动窗口残差统计法,通过将数据分割成固定大小的窗口,并计算每个窗口的残差。最后,将所有窗口的残差合并为一个向量并返回。你可以将你的数据作为输入,指定窗口大小,然后调用该函数得到残差向量。
阅读全文
相关推荐


















