加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0] test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]# 对标签进行二进制编码 lb = LabelBinarizer() train_labels = lb.fit_transform(train_labels) test_labels = lb.fit_transform(test_labels) # 将特征值缩放到0-1之间并且reshape为(28,28,1) train_features = train_features.values.reshape(-1, 28, 28, 1) / 255. test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.在以上代码基础上使用tensorflow构建深度神经网络处理mnist数据集,给出代码,请注意是深度神经网络,不是卷积神经网络
时间: 2023-12-24 07:14:37 浏览: 85
好的,以下是使用 TensorFlow 构建深度神经网络处理 MNIST 数据集的代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten
# 加载数据集
train_data = pd.read_csv('mnist_dataset/mnist_train.csv')
test_data = pd.read_csv('mnist_dataset/mnist_test.csv')
# 提取特征和标签
train_features, train_labels = train_data.iloc[:, 1:], train_data.iloc[:, 0]
test_features, test_labels = test_data.iloc[:, 1:], test_data.iloc[:, 0]
# 对标签进行二进制编码
lb = LabelBinarizer()
train_labels = lb.fit_transform(train_labels)
test_labels = lb.fit_transform(test_labels)
# 将特征值缩放到0-1之间并且reshape为(28,28,1)
train_features = train_features.values.reshape(-1, 28, 28, 1) / 255.
test_features = test_features.values.reshape(-1, 28, 28, 1) / 255.
# 构建模型
model = tf.keras.Sequential([
Flatten(input_shape=(28, 28, 1)),
Dense(256, activation='relu'),
Dense(128, activation='relu'),
Dense(10, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(train_features, train_labels, epochs=10, validation_data=(test_features, test_labels))
# 评估模型
test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2)
print('Test accuracy:', test_acc)
```
这个模型有两个隐藏层,分别是 256 和 128 个神经元,激活函数都使用 ReLU,输出层有 10 个神经元,激活函数使用 softmax。在编译模型时使用了 Adam 优化器和交叉熵损失函数。最后训练模型并评估模型的性能。
阅读全文