通过TensorFlow 2.0搭建对抗网络模型,利用公开的人脸数据库LFW生成人脸python代码
时间: 2024-01-06 18:06:45 浏览: 146
好的,以下是一个简单的利用TensorFlow 2.0搭建的对抗网络模型,用于生成人脸的Python代码:
```
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten, Conv2D, Conv2DTranspose
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.datasets import lfw
# 加载LFW数据集
(x_train, _), (_, _) = lfw.load_data()
# 将像素值缩放到-1到1之间
x_train = (x_train.astype('float32') - 127.5) / 127.5
# 定义生成器模型
def build_generator(latent_dim):
input = Input(shape=(latent_dim,))
x = Dense(128 * 8 * 8, activation='relu')(input)
x = Reshape((8, 8, 128))(x)
x = Conv2DTranspose(128, kernel_size=4, strides=2, padding='same', activation='relu')(x)
x = Conv2DTranspose(128, kernel_size=4, strides=2, padding='same', activation='relu')(x)
x = Conv2DTranspose(128, kernel_size=4, strides=2, padding='same', activation='relu')(x)
x = Conv2D(1, kernel_size=3, padding='same', activation='tanh')(x)
generator = Model(input, x)
return generator
# 定义判别器模型
def build_discriminator():
input = Input(shape=(64, 64, 1))
x = Conv2D(64, kernel_size=3, strides=2, padding='same', activation='relu')(input)
x = Conv2D(128, kernel_size=3, strides=2, padding='same', activation='relu')(x)
x = Conv2D(256, kernel_size=3, strides=2, padding='same', activation='relu')(x)
x = Flatten()(x)
x = Dense(1, activation='sigmoid')(x)
discriminator = Model(input, x)
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5), metrics=['accuracy'])
return discriminator
# 定义对抗网络模型
def build_gan(generator, discriminator):
discriminator.trainable = False
gan_input = Input(shape=(100,))
x = generator(gan_input)
gan_output = discriminator(x)
gan = Model(gan_input, gan_output)
gan.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
return gan
# 将生成器、判别器和对抗网络模型组合起来并进行训练
latent_dim = 100
generator = build_generator(latent_dim)
discriminator = build_discriminator()
gan = build_gan(generator, discriminator)
for epoch in range(10000):
# 训练判别器
idx = np.random.randint(0, x_train.shape[0], 128)
real_imgs = x_train[idx]
noise = np.random.normal(0, 1, (128, latent_dim))
fake_imgs = generator.predict(noise)
d_loss_real = discriminator.train_on_batch(real_imgs, np.ones((128, 1)))
d_loss_fake = discriminator.train_on_batch(fake_imgs, np.zeros((128, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# 训练生成器
noise = np.random.normal(0, 1, (128, latent_dim))
g_loss = gan.train_on_batch(noise, np.ones((128, 1)))
# 打印损失值
print('epoch %d d_loss=%.4f g_loss=%.4f' % (epoch+1, d_loss[0], g_loss))
# 每100个epoch保存一次生成的图片
if (epoch+1) % 100 == 0:
noise = np.random.normal(0, 1, (25, latent_dim))
gen_imgs = generator.predict(noise)
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(5, 5)
cnt = 0
for i in range(5):
for j in range(5):
axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("lfw_%d.png" % (epoch+1))
```
这个模型使用了LFW数据集,生成的是64x64大小的人脸图片。你可以通过调整模型的超参数来获得更好的生成效果,例如增加训练轮数、改变生成器和判别器的层数等。同时也应该注意到,这里的代码只是一个简单的示例,如果你想要在实际应用中使用,还需要进行更多的调试和优化。
阅读全文