kernel kmeans算法python代码
时间: 2023-04-01 18:00:37 浏览: 113
机器学习算法之使用Python实现KMeans算法.zip
以下是 kernel kmeans 算法的 Python 代码示例:
```python
import numpy as np
from sklearn.metrics.pairwise import rbf_kernel
def kernel_kmeans(X, n_clusters, gamma=1., max_iter=100):
n_samples, n_features = X.shape
# Initialize cluster centers randomly
centers = X[np.random.choice(n_samples, n_clusters, replace=False)]
# Initialize cluster assignments
labels = np.zeros(n_samples)
for i in range(max_iter):
# Compute pairwise RBF kernel matrix
K = rbf_kernel(X, centers, gamma=gamma)
# Assign samples to nearest cluster
new_labels = np.argmin(K, axis=1)
# Check convergence
if np.all(new_labels == labels):
break
labels = new_labels
# Update cluster centers
for j in range(n_clusters):
mask = (labels == j)
if np.sum(mask) > :
centers[j] = np.mean(X[mask], axis=)
return labels, centers
```
其中,`X` 是输入数据矩阵,每行代表一个样本,`n_clusters` 是聚类数目,`gamma` 是 RBF 核函数的参数,`max_iter` 是最大迭代次数。函数返回聚类结果和聚类中心。
阅读全文