activation_layer: Optional[Callable[..., nn.Module]] = None
时间: 2023-04-05 13:03:00 浏览: 166
这个问题涉及到深度学习的技术细节,我可以回答。activation_layer 是一个可选参数,用于指定神经网络中的激活函数层。如果不指定,默认使用 nn.ReLU()。可以根据具体的需求选择不同的激活函数,比如 sigmoid、tanh 等。
相关问题
class GNNLayer(nn.Module): def __init__(self, in_feats, out_feats, mem_size, num_rels, bias=True, activation=None, self_loop=True, dropout=0.0, layer_norm=False): super(GNNLayer, self).__init__() self.in_feats = in_feats self.out_feats = out_feats self.mem_size = mem_size self.num_rels = num_rels self.bias = bias self.activation = activation self.self_loop = self_loop self.layer_norm = layer_norm self.node_ME = MemoryEncoding(in_feats, out_feats, mem_size) self.rel_ME = nn.ModuleList([ MemoryEncoding(in_feats, out_feats, mem_size) for i in range(self.num_rels) ]) if self.bias: self.h_bias = nn.Parameter(torch.empty(out_feats)) nn.init.zeros_(self.h_bias) if self.layer_norm: self.layer_norm_weight = nn.LayerNorm(out_feats) self.dropout = nn.Dropout(dropout)
这段代码定义了一个 `GNNLayer` 类,它是一个图神经网络(GNN)的层。让我来解释一下每个部分的作用:
- `in_feats`:输入特征的大小。
- `out_feats`:输出特征的大小。
- `mem_size`:内存大小。
- `num_rels`:关系类型的数量。
- `bias`:是否使用偏置项。
- `activation`:激活函数(如果有)。
- `self_loop`:是否使用自环(self-loop)边。
- `dropout`:Dropout 的概率。
- `layer_norm`:是否使用层归一化(layer normalization)。
接下来,具体说明 `GNNLayer` 类的初始化过程:
- 调用 `super()` 函数来初始化基类 `nn.Module`,并保存输入参数为类的属性。
- 创建了一个名为 `node_ME` 的 `MemoryEncoding` 实例,用于处理节点特征。
- 创建了一个长度为 `num_rels` 的 `nn.ModuleList`,其中每个元素是一个名为 `rel_ME` 的 `MemoryEncoding` 实例,用于处理关系特征。
- 如果设置了 `bias`,则创建了一个可学习的偏置项参数 `h_bias`。
- 如果设置了 `layer_norm`,则创建了一个层归一化的权重参数 `layer_norm_weight`。
- 创建了一个 Dropout 层,用于进行随机失活操作。
这段代码展示了如何初始化一个 GNN 层,并配置其中所需的各种参数和组件。
class UNetEx(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3, weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None): super().__init__() assert len(filters) > 0 self.final_activation = final_activation self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers) decoders = [] for i in range(out_channels): decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers)) self.decoders = nn.Sequential(*decoders) def encode(self, x): tensors = [] indices = [] sizes = [] for encoder in self.encoder: x = encoder(x) sizes.append(x.shape) tensors.append(x) x, ind = F.max_pool2d(x, 2, 2, return_mask=True) indices.append(ind) return x, tensors, indices, sizes def decode(self, _x, _tensors, _indices, _sizes): y = [] for _decoder in self.decoders: x = _x tensors = _tensors[:] indices = _indices[:] sizes = _sizes[:] for decoder in _decoder: tensor = tensors.pop() size = sizes.pop() ind = indices.pop() # 反池化操作,为上采样 x = F.max_unpool2d(x, ind, 2, 2, output_size=size) x = paddle.concat([tensor, x], axis=1) x = decoder(x) y.append(x) return paddle.concat(y, axis=1) def forward(self, x): x, tensors, indices, sizes = self.encode(x) x = self.decode(x, tensors, indices, sizes) if self.final_activation is not None: x = self.final_activation(x) return x 不修改上述神经网络的encoder和decoder的生成方式,用嘴少量的代码实现attention机制,在上述代码里修改。
可以在UNetEx类中加入一个Attention模块,然后在decode函数中使用该Attention模块。具体实现如下:
```
class Attention(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv2D(in_channels, out_channels, kernel_size=1)
self.conv2 = nn.Conv2D(out_channels, out_channels, kernel_size=1)
def forward(self, x, y):
x = self.conv1(x)
y = self.conv2(y)
z = paddle.add(x, y)
z = nn.functional.sigmoid(z)
z = paddle.multiply(x, z)
return z
class UNetEx(nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size=3, filters=[16, 32, 64], layers=3,
weight_norm=True, batch_norm=True, activation=nn.ReLU, final_activation=None):
super().__init__()
assert len(filters) > 0
self.final_activation = final_activation
self.encoder = create_encoder(in_channels, filters, kernel_size, weight_norm, batch_norm, activation, layers)
self.attention = Attention(filters[-1], filters[-1])
decoders = []
for i in range(out_channels):
decoders.append(create_decoder(1, filters, kernel_size, weight_norm, batch_norm, activation, layers))
self.decoders = nn.Sequential(*decoders)
def encode(self, x):
tensors = []
indices = []
sizes = []
for encoder in self.encoder:
x = encoder(x)
sizes.append(x.shape)
tensors.append(x)
x, ind = F.max_pool2d(x, 2, 2, return_mask=True)
indices.append(ind)
return x, tensors, indices, sizes
def decode(self, _x, _tensors, _indices, _sizes):
y = []
for _decoder in self.decoders:
x = _x
tensors = _tensors[:]
indices = _indices[:]
sizes = _sizes[:]
for decoder in _decoder:
tensor = tensors.pop()
size = sizes.pop()
ind = indices.pop()
# 反池化操作,为上采样
x = F.max_unpool2d(x, ind, 2, 2, output_size=size)
x = self.attention(tensor, x) # 使用Attention模块
x = decoder(x)
y.append(x)
return paddle.concat(y, axis=1)
def forward(self, x):
x, tensors, indices, sizes = self.encode(x)
x = self.decode(x, tensors, indices, sizes)
if self.final_activation is not None:
x = self.final_activation(x)
return x
```
在该代码中,我们增加了一个Attention类,它接收两个特征图,通过两个1x1卷积层将它们映射到同一维度,然后将它们相加并通过sigmoid函数归一化,最后将第一个特征图与归一化后的结果相乘得到注意力加权后的特征图。在UNetEx类中,我们在decoder函数中使用了Attention类,并将encoder中的最后一层特征图与decoder中的每一层特征图进行注意力加权。这样就实现了在UNetEx中加入Attention机制。
阅读全文