activation_layer: Optional[Callable[..., nn.Module]] = None
时间: 2023-04-05 10:03:00 浏览: 155
这个问题涉及到深度学习的技术细节,我可以回答。activation_layer 是一个可选参数,用于指定神经网络中的激活函数层。如果不指定,默认使用 nn.ReLU()。可以根据具体的需求选择不同的激活函数,比如 sigmoid、tanh 等。
相关问题
class GNNLayer(nn.Module): def __init__(self, in_feats, out_feats, mem_size, num_rels, bias=True, activation=None, self_loop=True, dropout=0.0, layer_norm=False): super(GNNLayer, self).__init__() self.in_feats = in_feats self.out_feats = out_feats self.mem_size = mem_size self.num_rels = num_rels self.bias = bias self.activation = activation self.self_loop = self_loop self.layer_norm = layer_norm self.node_ME = MemoryEncoding(in_feats, out_feats, mem_size) self.rel_ME = nn.ModuleList([ MemoryEncoding(in_feats, out_feats, mem_size) for i in range(self.num_rels) ]) if self.bias: self.h_bias = nn.Parameter(torch.empty(out_feats)) nn.init.zeros_(self.h_bias) if self.layer_norm: self.layer_norm_weight = nn.LayerNorm(out_feats) self.dropout = nn.Dropout(dropout)
这段代码定义了一个 `GNNLayer` 类,它是一个图神经网络(GNN)的层。让我来解释一下每个部分的作用:
- `in_feats`:输入特征的大小。
- `out_feats`:输出特征的大小。
- `mem_size`:内存大小。
- `num_rels`:关系类型的数量。
- `bias`:是否使用偏置项。
- `activation`:激活函数(如果有)。
- `self_loop`:是否使用自环(self-loop)边。
- `dropout`:Dropout 的概率。
- `layer_norm`:是否使用层归一化(layer normalization)。
接下来,具体说明 `GNNLayer` 类的初始化过程:
- 调用 `super()` 函数来初始化基类 `nn.Module`,并保存输入参数为类的属性。
- 创建了一个名为 `node_ME` 的 `MemoryEncoding` 实例,用于处理节点特征。
- 创建了一个长度为 `num_rels` 的 `nn.ModuleList`,其中每个元素是一个名为 `rel_ME` 的 `MemoryEncoding` 实例,用于处理关系特征。
- 如果设置了 `bias`,则创建了一个可学习的偏置项参数 `h_bias`。
- 如果设置了 `layer_norm`,则创建了一个层归一化的权重参数 `layer_norm_weight`。
- 创建了一个 Dropout 层,用于进行随机失活操作。
这段代码展示了如何初始化一个 GNN 层,并配置其中所需的各种参数和组件。
def create_decoder_block(in_channels, out_channels, kernel_size, wn=True, bn=True, activation=nn.ReLU, layers=2, final_layer=False): decoder = [] for i in range(layers): _in = in_channels _out = in_channels _bn = bn _activation = activation if i == 0: _in = in_channels * 2 if i == layers - 1: _out = out_channels if final_layer: _bn = False _activation = None decoder.append(create_layer(_in, _out, kernel_size, wn, _bn, _activation, nn.Conv2DTranspose)) return nn.Sequential(*decoder) 在这个decoder里加attention,怎么加?
要在decoder里加上attention,可以按照以下步骤进行:
1. 在decoder的输入和输出之间加入attention模块,这可以通过创建一个新的类来实现。例如,你可以创建一个名为`AttentionBlock`的类,该类接受来自encoder的特征图和decoder的上一层输出作为输入,并输出加权后的特征图。
2. 在`create_decoder_block`函数中,将`AttentionBlock`添加到decoder中。具体来说,你可以在每个decoder块的输入和输出之间添加一个`AttentionBlock`。例如,你可以在以下代码段中插入`AttentionBlock`:
```
if i == 0:
# Add attention module here
decoder.append(AttentionBlock(encoder_channels, in_channels))
_in = in_channels * 2
```
3. 在`AttentionBlock`中实现attention逻辑。在这里,你可以使用`nn.Conv2d`和`nn.Linear`层来计算注意力分数,并使用softmax函数将它们归一化到[0, 1]的范围内。然后,你可以将这些分数乘以encoder的特征图,得到加权后的特征图,并将其与decoder的上一层输出相加。
以下是一个示例`AttentionBlock`的代码:
```
class AttentionBlock(nn.Module):
def __init__(self, encoder_channels, decoder_channels):
super(AttentionBlock, self).__init__()
self.conv = nn.Conv2d(encoder_channels + decoder_channels, decoder_channels, kernel_size=1)
self.linear = nn.Linear(decoder_channels, 1)
def forward(self, encoder_features, decoder_features):
# Compute attention scores
batch_size, _, height, width = decoder_features.size()
encoder_features = F.interpolate(encoder_features, size=(height, width))
attention_scores = self.conv(torch.cat([encoder_features, decoder_features], dim=1))
attention_scores = attention_scores.view(batch_size, -1)
attention_scores = self.linear(attention_scores)
attention_scores = attention_scores.view(batch_size, 1, height, width)
attention_scores = F.softmax(attention_scores, dim=-1)
# Apply attention to encoder features
weighted_encoder_features = encoder_features * attention_scores
weighted_encoder_features = weighted_encoder_features.sum(dim=-1).sum(dim=-1).unsqueeze(2).unsqueeze(3)
# Combine with decoder features
combined_features = torch.cat([weighted_encoder_features, decoder_features], dim=1)
return combined_features
```
在这个示例中,我们首先将encoder的特征图插值为与decoder的特征图相同的大小,然后将它们拼接在一起,并通过一个卷积层计算注意力分数。接着,我们将分数归一化,并将它们乘以encoder的特征图,得到加权的特征图。最后,我们将加权的特征图与decoder的上一层输出拼接在一起,并返回结果。
阅读全文