from torch import nn
时间: 2023-09-24 19:08:14 浏览: 84
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Create an instance of the network
net = Net()
相关问题
import torch import torch.nn.functional as F from torch import nn
这是一段导入 PyTorch 库中常用模块和函数的代码。其中:
- `import torch` 导入了 PyTorch 库;
- `import torch.nn.functional as F` 导入了 PyTorch 中的函数模块,并将其命名为 `F`;
- `from torch import nn` 导入了 PyTorch 中的 `nn` 模块,它包含了各种神经网络层的实现。
解释代码:import numpy as np import torch from torch import nn from torch.nn import functional as F
这段代码的作用是导入必要的Python库和模块。具体解释如下:
- `import numpy as np`:导入NumPy库,将其别名为`np`,以便在代码中更方便地使用。
- `import torch`:导入PyTorch库。
- `from torch import nn`:从PyTorch库中导入`nn`模块,该模块包含神经网络的构建块。
- `from torch.nn import functional as F`:从`nn`模块中导入`functional`模块并将其别名为`F`,该模块包含一些常用的函数,如激活函数和损失函数。
阅读全文