帮忙写一个基于pytorch的二分类一维卷积神经网络,要求卷积模块不少于4个
时间: 2023-04-04 19:02:38 浏览: 110
好的,我可以回答这个问题。以下是一个基于 PyTorch 的二分类一维卷积神经网络的示例代码:
```
import torch
import torch.nn as nn
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool1d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(128 * 25, 256)
self.fc2 = nn.Linear(256, 2)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool(x)
x = self.relu(self.conv3(x))
x = self.pool(x)
x = self.relu(self.conv4(x))
x = self.pool(x)
x = x.view(-1, 128 * 25)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这个模型包含了 4 个卷积模块,每个模块都包含了一个卷积层和一个 ReLU 激活函数。模型还包含了一个最大池化层和两个全连接层。你可以根据自己的需求修改模型的参数和结构。
阅读全文