for p in range(1, 3, 1): q = quantiles[3 - p] c = colors[p] conf_int = 13 * q * std / np.sqrt(len(y_pred)) plt.fill_between(np.arange(len(y_pred)), y_pred - conf_int, y_pred + conf_int, color=c, alpha=1, edgecolor='none') print(p)
时间: 2024-04-04 15:29:30 浏览: 158
这段代码是一个for循环,循环变量p从1到3,步长为1。在循环中,首先根据当前的p值计算q值和颜色c值。然后,通过给定的公式计算置信区间conf_int。接着,使用fill_between函数画出置信区间。最后,输出循环变量p的值。
需要注意的是,这段代码缺少一些上下文信息,可能无法完全理解其含义和作用。
相关问题
解释plt.plot(y_pred, label='预测值', color='#BCE6E1') plt.plot(y_true, label='真实值', color='#FFFF77') # b8ccfe#FFFF77#FF8888#00FF99#5599FF#CD853F#FFB6C1 colors = ['#E8FAFC', '#79E4EF','#09484F'] q = quantiles[19] c = colors[0] conf_int = 13 * q * std / np.sqrt(len(y_pred)) plt.fill_between(np.arange(len(y_pred)), y_pred - conf_int, y_pred + conf_int, color=c, alpha=1,edgecolor='none',label = "置信区间")
这段代码是用来绘制预测值和真实值之间的置信区间的。下面是这段代码的解释:
- `plt.plot(y_pred, label='预测值', color='#BCE6E1')` 绘制预测值的线条,其中 `y_pred` 是预测值的数组,`label` 是线条的标签,`color` 是线条的颜色。
- `plt.plot(y_true, label='真实值', color='#FFFF77')` 绘制真实值的线条,其中 `y_true` 是真实值的数组,`label` 是线条的标签,`color` 是线条的颜色。
- `colors = ['#E8FAFC', '#79E4EF','#09484F']` 定义了三种颜色,用于绘制置信区间的填充色。
- `q = quantiles[19]` 从预先计算好的置信区间分位数中取出第 19 位(即 95% 的置信区间)。
- `c = colors[0]` 选取第一种颜色作为置信区间的填充色。
- `conf_int = 13 * q * std / np.sqrt(len(y_pred))` 计算置信区间的范围,其中 `std` 是预测值的标准差,`len(y_pred)` 是预测值的数量,`13` 是一个常数,可以根据置信度和样本量的大小来确定。
- `plt.fill_between(np.arange(len(y_pred)), y_pred - conf_int, y_pred + conf_int, color=c, alpha=1, edgecolor='none', label="置信区间")` 绘制置信区间的填充图形,其中 `np.arange(len(y_pred))` 是 x 轴的取值范围,`y_pred - conf_int` 和 `y_pred + conf_int` 分别是置信区间的下边界和上边界,`color` 是填充色,`alpha` 是填充的透明度,`edgecolor` 是边缘颜色,`label` 是填充图形的标签。
这段代码的意思是什么def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None): for i in range(len(boxes)): box = boxes[i] cls_id = int(cls_ids[i]) score = scores[i] if score < conf: continue x0 = int(box[0]) y0 = int(box[1]) x1 = int(box[2]) y1 = int(box[3]) color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist() text = '{}:{:.1f}%'.format(class_names[cls_id], score * 100) txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255) font = cv2.FONT_HERSHEY_SIMPLEX txt_size = cv2.getTextSize(text, font, 0.4, 1)[0] cv2.rectangle(img, (x0, y0), (x1, y1), color, 4) txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist() cv2.rectangle( img, (x0, y0+1 ), (x0 + txt_size[0]+1 , y0 + int(1.5*txt_size[1])), txt_bk_color, -1 ) cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.6, txt_color, thickness=2) return img
这段代码定义了一个名为 `vis` 的函数,该函数用于可视化目标检测的结果,包括在图像上绘制检测框、标注检测分数和类别名称等信息。
函数的输入参数包括:图像 `img`、检测框 `boxes`、检测分数 `scores`、类别标识符 `cls_ids`、阈值 `conf` 和类别名称 `class_names`。
在函数中,首先遍历所有的检测框 `boxes`,对于每个检测框,获取其坐标、类别标识符和检测分数,并判断该检测框的检测分数是否大于阈值 `conf`,如果小于阈值,则跳过该检测框。
对于满足条件的检测框,根据其类别标识符 `cls_ids` 获取对应的颜色,并在图像上绘制检测框、标注检测分数和类别名称等信息。具体包括:
- 获取检测框的坐标 `(x0, y0)` 和 `(x1, y1)`。
- 根据类别标识符 `cls_ids` 获取对应的颜色,并将其转换为 RGB 值,然后使用 `cv2.rectangle` 函数在图像上绘制检测框。
- 根据类别标识符 `cls_ids` 和检测分数 `score`,生成标注文本 `text`,并使用 `cv2.putText` 函数将标注文本绘制在图像上。
- 为了让标注文本更加清晰,先使用 `cv2.getTextSize` 函数计算标注文本的大小,然后在标注文本下方添加一个矩形框,并将矩形框的颜色设置为淡色,以便与标注文本区分开来。
最终,函数返回可视化的图像。
阅读全文