cudnn.benchmark = True weights = 'weights/yolov5s.pt' # 模型加载路径 imgsz = 640 # 预测图尺寸大小 self.conf_thres = 0.25 # NMS置信度 self.iou_thres = 0.45 # IOU阈值 # 载入模型 self.model = attempt_load(weights, map_location=self.device) stride = int(self.model.stride.max()) self.imgsz = check_img_size(imgsz, s=stride) if self.half: self.model.half() # to FP16 # 从模型中获取各类别名称 self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names # 给每一个类别初始化颜色 self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
时间: 2024-02-14 07:31:06 浏览: 97
这部分代码用于初始化目标检测模型。首先,设置了`cudnn.benchmark = True`以提高模型的性能。然后,定义了一些变量,包括模型的权重文件路径`weights`、预测图像的尺寸`imgsz`、NMS(非极大值抑制)的置信度阈值`conf_thres`和IOU(交并比)的阈值`iou_thres`。
接下来,调用`attempt_load()`函数加载模型权重文件,并根据设备类型选择计算设备。然后,根据模型的stride值和预测图像尺寸,设置了`stride`和`imgsz`变量的值。
如果使用半精度运算(half precision),则将模型转换为FP16格式。然后,从模型中获取类别名称,并为每个类别随机初始化一个颜色。
这段代码表明了初始化目标检测模型和相关参数的过程。
相关问题
torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True
`torch.backends.cudnn.benchmark = True` 和 `torch.backends.cudnn.deterministic = True` 是用于设置PyTorch在使用CUDA加速时的一些优化选项。
- `torch.backends.cudnn.benchmark = True` :当设置为True时,PyTorch会在每次运行时自动寻找最适合当前硬件的卷积实现算法,并进行优化。这样可以加速模型的训练和推断过程。然而,由于寻找最佳算法需要额外的计算开销,因此在输入大小不变的情况下,首次运行可能会比后续运行慢一些。如果输入大小经常变化,建议将此选项设为True,以获得最佳性能。
- `torch.backends.cudnn.deterministic = True` :当设置为True时,PyTorch的卷积操作将以确定性模式运行,即给定相同的输入和参数,输出将始终相同。这对于确保结果的可重复性很重要,尤其是在进行模型训练和验证时。然而,由于确定性模式可能会带来一些性能损失,因此在不需要结果可重复性的情况下,可以将此选项设置为False。
这两个选项可以根据具体场景和需求进行设置。`torch.backends.cudnn.benchmark` 用于自动选择最佳卷积实现算法以提高性能,而 `torch.backends.cudnn.deterministic` 用于确保结果的可重复性。根据你的需求,你可以根据情况启用或禁用它们。
torch.manual_seed(4321) # reproducible torch.cuda.manual_seed_all(4321) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # Can change it to False --> default: False torch.backends.cudnn.enabled = True
这是一些用于设置PyTorch运行时的随机数种子和CUDA加速库的设置。torch.manual_seed(4321)设置CPU随机数种子,torch.cuda.manual_seed_all(4321)设置GPU随机数种子,保证每次运行程序生成的随机数一致,方便调试和结果复现。torch.backends.cudnn.benchmark = False是为了禁用cudnn的自动调参功能,以保证结果的稳定性和可重复性。torch.backends.cudnn.deterministic = True是为了让cudnn使用确定性算法,从而确保每次运行结果相同。torch.backends.cudnn.enabled = True是为了启用CUDA加速库的使用。
阅读全文