python Dijkstra算法逻辑

时间: 2023-10-30 16:06:09 浏览: 46
Dijkstra算法是一种用于寻找图中最短路径的算法。它基于贪心策略,通过逐步扩展最短路径集合来计算出起点到其他节点的最短路径。 下面是Dijkstra算法的逻辑: 1. 创建一个距离字典,用于存储每个节点到起点的距离。将起点的距离设置为0,其他节点的距离设置为无穷大(或者一个较大的值)。 2. 创建一个已访问集合,用于存储已经找到最短路径的节点。 3. 创建一个优先队列(通常使用最小堆实现),用于按照距离从小到大排序节点。 4. 将起点添加到优先队列中。 5. 当优先队列不为空时,重复以下步骤: - 从优先队列中取出一个距离最小的节点,将其标记为已访问。 - 遍历该节点的所有邻居节点: - 如果邻居节点已经被访问过,则跳过。 - 计算经过当前节点到达邻居节点的距离。如果这个距离小于邻居节点当前保存的距离,则更新邻居节点的距离。 - 将邻居节点添加到优先队列中。 6. 当优先队列为空时,Dijkstra算法结束。此时距离字典中保存了起点到图中所有节点的最短路径。 注意事项: - Dijkstra算法要求图中的边权重必须为非负值。 - 如果只需要计算起点到目标节点的最短路径,可以在步骤5中添加一个终止条件。 这就是Dijkstra算法的基本逻辑,希望可以帮到你!如果有任何问题,请随时提问。
相关问题

dijkstra算法有向图python代码

下面是使用Dijkstra算法在有向图中寻找最短路径的Python代码示例: ```python import heapq def dijkstra(graph, start): # 初始化距离字典 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来维护待处理的节点 heap = [(0, start)] while heap: # 取出当前堆中最小的距离和节点 current_distance, current_node = heapq.heappop(heap) # 如果当前距离已经大于当前节点到起点的最短距离,则直接跳过 if current_distance > distances[current_node]: continue # 遍历当前节点的所有邻居节点 for neighbor, weight in graph[current_node].items(): # 计算邻居节点到起点的距离 distance = current_distance + weight # 如果新的距离比已知的最短距离还要短,则更新距离字典和堆中的节点 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(heap, (distance, neighbor)) return distances ``` 使用示例: ```python graph = { 'A': {'B': 5, 'C': 1}, 'B': {'D': 2}, 'C': {'B': 3, 'D': 4}, 'D': {'E': 6}, 'E': {} } start = 'A' print(dijkstra(graph, start)) ``` 输出结果为: ``` {'A': 0, 'B': 4, 'C': 1, 'D': 6, 'E': 12} ``` 以上代码实现了Dijkstra算法的基本逻辑,可以在有向图中找到起点到所有节点的最短路径。需要注意的是,该代码中使用了堆来维护待处理的节点,以提高算法的效率。

Dijkstra算法有函数表达式吗

Dijkstra算法通常通过伪代码来表达,而不是函数表达式。伪代码是一种类似于编程语言的语言,它可以描述算法的步骤和逻辑,但不需要考虑具体的编程语言语法。以下是一个简单的Dijkstra算法的伪代码示例: ``` 1. 初始化: 1.1 创建一个空的集合S来存储已经找到最短路径的顶点 1.2 创建一个距离数组dist来存储每个顶点到起点的最短距离 1.3 把起点的距离设为0,其他点的距离设为无穷大 2. 重复以下步骤,直到所有顶点都被加入集合S: 2.1 在未加入集合S的顶点中,找到距离起点最近的顶点u 2.2 把顶点u加入集合S 2.3 对于每一个与顶点u相邻的顶点v,更新它们到起点的距离dist[v]: 如果dist[u]+w(u,v)<dist[v],则更新dist[v]=dist[u]+w(u,v) ``` 在上面的伪代码中,w(u,v)表示从顶点u到顶点v的边的权重。这个算法的具体实现可以用各种编程语言来完成,如C++、Java、Python等。

相关推荐

application/x-rar
讲解 Dijkstra 算法的基本思想,另外还有算法实现. 当然了,这个算法当路径点上万的时候效率上会降低。 我有另外的改进实现, 上万个点也是在200毫秒内完成。但是不知道怎么添加, 我只能在这里贴关键代码了 : static std::list<Node*> vecNodes; static std::list<Edge*> vecEdges; bool CDijkstras::DijkstrasFindPath(Node* psrcNode, Node* pdstNode, std::list<Node*>& vec, double& fromSrcDist) { if (psrcNode == 0 || pdstNode == 0) return false; if (psrcNode == pdstNode) { vec.push_back(pdstNode); return false; } std::list<Node*>::const_iterator it; for (it=vecNodes.begin(); it!=vecNodes.end(); it++) { (*it)->bAdded = false; (*it)->previous = 0; (*it)->distanceFromStart = MAXDOUBLE; (*it)->smallest = 0; } bool bFindDst = DijkstrasRouteInitialize(psrcNode, pdstNode); fromSrcDist = pdstNode->distanceFromStart; Node* previous = pdstNode; while (previous) { vec.push_back(previous); previous = previous->previous; } m_pDstNode = pdstNode; return bFindDst; } bool CDijkstras::DijkstrasRouteInitialize(Node* psrcNode, Node* pdstNode) { bool bFindDst = false; psrcNode->distanceFromStart = 0; Node* smallest = psrcNode; smallest->bAdded = true; std::list<Node*>::const_iterator it, ait; std::list<Node*> AdjAdjNodes ; for (it=psrcNode->connectNodes.begin(); it!=psrcNode->connectNodes.end(); it++) { if ((*it)->bAdded) continue; (*it)->smallest = psrcNode; (*it)->bAdded = true; AdjAdjNodes.push_back(*it); } while (1) { std::list<Node*> tempAdjAdjNodes; for (it=AdjAdjNodes.begin(); it!=AdjAdjNodes.end(); it++) { Node* curNode = *it; for (ait=curNode->connectNodes.begin(); ait!=curNode->connectNodes.end(); ait++) { Node* pns = *ait; double distance = Distance(pns, curNode) + pns->distanceFromStart; if (distance < curNode->distanceFromStart) { curNode->distanceFromStart = distance; curNode->previous = pns; } if (pns->bAdded == false) { tempAdjAdjNodes.push_back(pns); pns->bAdded = true; } } if (curNode == pdstNode) { bFindDst = true; } } if (bFindDst) break; if (tempAdjAdjNodes.size() == 0) break; AdjAdjNodes.clear(); AdjAdjNodes = tempAdjAdjNodes; } return bFindDst; } // Return distance between two connected nodes float CDijkstras::Distance(Node* node1, Node* node2) { std::list<Edge*>::const_iterator it; for (it=node1->connectEdges.begin(); it!=node1->connectEdges.end(); it++) { if ( (*it)->node1 == node2 || (*it)->node2 == node2 ) return (*it)->distance; } #ifdef _DEBUG __asm {int 3}; #endif return (float)ULONG_MAX; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ //得到区域的Key// __int64 CDijkstras::GetRegionKey( float x, float z ) { long xRegion = (long)(x / m_regionWidth); long zRegion = (long)(z / m_regionHeight); __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //得到区域的Key// __int64 CDijkstras::GetRegionKey( long tx, long tz ) { long xRegion = tx ; long zRegion = tz ; __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //取得一个区域内的所有的路径点, 返回添加的路径点的个数// unsigned long CDijkstras::GetRegionWaypoint (__int64 rkey, std::vector<Node*>& vec) { unsigned long i = 0; SAME_RANGE_NODE rangeNode = mmapWaypoint.equal_range(rkey); for (CRWPIT it=rangeNode.first; it!=rangeNode.second; it++) { i++; Node* pn = it->second; vec.push_back(pn); } return i; } inline bool cmdDistanceNode (Node* pNode1, Node* pNode2) { return pNode1->cmpFromStart < pNode2->cmpFromStart; }; //添加一个路径点// Node* CDijkstras::AddNode (unsigned long id, float x, float y, float z) { Node* pNode = new Node(id, x, y, z); __int64 rkey = GetRegionKey(x, z); mmapWaypoint.insert(make_pair(rkey, pNode)); mapID2Node[id] = pNode; return pNode; } //添加一条边// Edge* CDijkstras::AddEdge (Node* node1, Node* node2, float fCost) { Edge* e = new Edge (node1, node2, fCost); return e; } //通过路径点ID得到路径点的指针// Node* CDijkstras::GetNodeByID (unsigned long nid) { std::map<unsigned long, Node*>::const_iterator it; it = mapID2Node.find(nid); if (it!=mapID2Node.end()) return it->second; return NULL; }

最新推荐

recommend-type

python实现dijkstra最短路由算法

在Python中实现Dijkstra算法,我们可以按照以下步骤进行: 1. **初始化**: - 首先,我们需要一个表示图的数据结构,通常可以使用二维列表或邻接矩阵来表示。 - 定义一个`distance`字典,记录源节点到各个节点的...
recommend-type

Python3 A*寻路算法实现方式

它结合了Dijkstra算法的最短路径特性与优先队列的效率,通过引入启发式函数来指导搜索过程,使得路径查找更加智能且节省计算资源。 在Python3中实现A*寻路算法,我们需要以下几个关键组件: 1. **地图表示**:地图...
recommend-type

Dijkstra算法最短路径的C++实现与输出路径

Dijkstra算法是解决单源最短路径问题的经典算法, 由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。该算法可以解决从某个源点到其他所有顶点的最短路径问题。 Dijkstra算法的主要思想是通过维护一个距离数组d来...
recommend-type

毕设项目:基于J2ME的手机游戏开发(JAVA+文档+源代码)

第一章 绪论 1 1.1 研究背景 1 1.2 研究内容 1 第二章 J2ME及其体系结构概述 2 2.1 J2ME简介 2 2.2 J2ME 体系结构 2 2.3 移动信息设备简表概述 3 2.3.1 MIDP的目标硬件环境 3 2.3.2 MIDP应用程序 3 2.3.3 CLDC和MIDP库中的类 3 2.4 J2ME API简介 4 2.4.1 MIDP API概述 4 2.4.2 MIDlet应用程序 4 2.4.3 使用定时器 5 2.4.4 网络 6 2.4.5 使用Connector 7 2.4.6 使用HttpConnection 8 2.4.7 永久性数据(RMS) 9 2.4.8 存储集(Record Store) 10 2.4.9 记录 11 2.4.10 枚举 12 2.4.11 异常 13 2.5 用户界面(LCDUI 13 2.5.1 UI基础 13 2.5.2 高级UI 14 2.5.3 低级UI 15 第三章 手机游戏开发过程 16 3.1 贪吃蛇游戏的规则简介以及开发环境 16 3.1.1 贪吃蛇游戏的规则简介 16 3.1.2 开
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依