classifier_layer

时间: 2023-07-14 16:06:40 浏览: 90
`classifier_layer` 是一个模型中的一层或一组层,用于进行分类任务。在深度学习中,分类器通常是模型的最后一层,用于将模型提取的特征映射映射到类别概率或类别标签。 分类器层可以是全连接层(Fully Connected Layer),也可以是 softmax 层、sigmoid 层等。全连接层将输入的特征向量与权重矩阵相乘,并通过激活函数产生预测结果。softmax 层通常用于多类别分类任务,将输入转换为每个类别的概率。sigmoid 层通常用于二分类任务,将输入转换为预测的类别概率。 在训练过程中,分类器层的参数会根据损失函数和反向传播算法来进行优化,以使得模型能够正确地分类样本。 需要注意的是,具体使用的分类器层的结构和参数会根据具体的任务和模型架构而有所不同。在实践中,可以根据具体的需求和数据集的特点来选择适合的分类器层。
相关问题

target_sample_c = logits_c * target_norm source_w_norm = F.normalize(self.classifier_layer.weight) source_w_norm_c = source_w_norm[c] metric_loss_c = torch.mean(F.linear(target_sample_c, source_w_norm_c))

根据你提供的代码片段,可以看出这部分是计算度量损失的代码,其中使用了目标样本和源样本的特征向量以及分类器层的权重。 具体解释如下: 1. `target_sample_c` 表示目标样本对应类别 `c` 的特征向量乘以 `logits_c`,这里的 `logits_c` 可能是目标样本在分类器层对应类别 `c` 的得分。 2. `target_norm` 表示目标样本的特征向量进行归一化处理后的结果。 3. `source_w_norm` 表示分类器层的权重进行归一化处理后的结果。 4. `source_w_norm_c` 表示分类器层对应类别 `c` 的归一化权重。 5. `F.linear(target_sample_c, source_w_norm_c)` 表示将目标样本对应类别 `c` 的特征向量与分类器层对应类别 `c` 的归一化权重进行线性变换。 6. `torch.mean()` 表示计算线性变换结果的均值,即求出目标样本对应类别 `c` 的度量损失。 这段代码的目的是计算目标样本在特征空间中与源样本对应类别 `c` 的相似度(通过线性变换),并求出相似度的均值作为度量损失。这个度量损失用于衡量目标样本与源样本对应类别 `c` 的差异或距离。 需要注意的是,这只是代码片段的一部分,可能还有其他代码用于整个度量损失的计算和优化。如果有完整的代码或更多上下文信息,我可以提供更具体的解释和帮助。

loss_metric = 0.0 target_norm = F.normalize(target) # print('target_norm:',target_norm.size()) target_clf = self.classifier_layer(target,None) # print('target_clf:',target_clf.size()) target_logits = torch.nn.functional.softmax(target_clf, dim=1) # print(target_logits[0]) for c in range(self.num_class): logits_c = target_logits[:, c].reshape((target_logits.shape[0],1)) # (B, 1) # print('logits_c:',logits_c.size()) # print('logits_c:',logits_c[0]) # print('target_norm:',target_norm[0]) target_sample_c = logits_c * target_norm # print('target_sample_C:',target_sample_c[0]) # print('target_sample_c:',target_sample_c.size()) source_w_norm = F.normalize(self.classifier_layer.weight) # print('source_w_norm:',source_w_norm.size()) source_w_norm_c = source_w_norm[c] # print('source_w_norm_c:',source_w_norm_c.size()) metric_loss_c = torch.mean(F.linear(target_sample_c, source_w_norm_c)) # print('metric_loss_c:',metric_loss_c.size()) loss_metric += metric_loss_c metric_loss = 1 - (loss_metric / self.num_class)

这段代码是一个计算度量损失(metric loss)的过程。下面是对每个步骤的解释: 1. `loss_metric = 0.0`:初始化度量损失为0。 2. `target_norm = F.normalize(target)`:对 `target` 张量进行归一化处理,使用 `F.normalize()` 函数,使其成为单位向量。 3. `target_clf = self.classifier_layer(target, None)`:将归一化后的 `target` 通过分类器层(`self.classifier_layer`)进行前向传播,得到分类器的输出结果 `target_clf`。 4. `target_logits = torch.nn.functional.softmax(target_clf, dim=1)`:对分类器的输出结果进行 softmax 操作,得到归一化的概率分布 `target_logits`,这里 `dim=1` 表示按照第一个维度进行 softmax。 5. `for c in range(self.num_class):`:遍历每个类别。 6. `logits_c = target_logits[:, c].reshape((target_logits.shape[0],1))`:从 `target_logits` 中选择第 `c` 列,并将其形状改变为 `(B, 1)`,其中 `B` 是批量大小。 7. `target_sample_c = logits_c * target_norm`:将 `logits_c` 与归一化后的 `target_norm` 相乘,得到每个样本在类别 `c` 上的度量向量。 8. `source_w_norm = F.normalize(self.classifier_layer.weight)`:对分类器层的权重进行归一化处理,得到归一化后的权重张量 `source_w_norm`。 9. `source_w_norm_c = source_w_norm[c]`:选择 `source_w_norm` 中的第 `c` 个类别的归一化权重向量。 10. `metric_loss_c = torch.mean(F.linear(target_sample_c, source_w_norm_c))`:计算度量损失,通过将 `target_sample_c` 与 `source_w_norm_c` 进行线性变换,并取平均值。 11. `loss_metric += metric_loss_c`:将每个类别的度量损失相加,累积到总的度量损失中。 12. `metric_loss = 1 - (loss_metric / self.num_class)`:计算最终的度量损失,将累积的度量损失除以类别数目,并将结果与1相减。 这段代码实现了计算度量损失的过程,其中利用了归一化后的目标向量与归一化后的权重向量进行线性变换,并计算平均值来表示度量损失。最终的度量损失是通过将每个类别的度量损失相加并除以类别数目得到的。

相关推荐

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序利用pytorch框架修改成图像检测与分类输出坐标、大小和种类

class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)

Traceback (most recent call last): File "C:\Users\樊晨悦\PycharmProjects\DANN05 - 副本\dann.py", line 282, in <module> main(args) File "C:\Users\樊晨悦\PycharmProjects\DANN05 - 副本\dann.py", line 133, in main train(train_source_iter, train_target_iter, classifier, domain_adv, optimizer, File "C:\Users\樊晨悦\PycharmProjects\DANN05 - 副本\dann.py", line 188, in train y, f = model(x) # 给定输入 x,模型将计算输出 y 和一些中间特征 f File "D:\anaconda3\.conda\envs\DA\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\樊晨悦\PycharmProjects\DANN05 - 副本\common\modules\classifier.py", line 77, in forward f = self.pool_layer(self.backbone(x)) File "D:\anaconda3\.conda\envs\DA\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "D:\anaconda3\.conda\envs\DA\lib\site-packages\torch\nn\modules\container.py", line 119, in forward input = module(input) File "D:\anaconda3\.conda\envs\DA\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "D:\anaconda3\.conda\envs\DA\lib\site-packages\torch\nn\modules\pooling.py", line 1132, in forward return F.adaptive_avg_pool2d(input, self.output_size) File "D:\anaconda3\.conda\envs\DA\lib\site-packages\torch\nn\functional.py", line 1036, in adaptive_avg_pool2d _output_size = _list_with_default(output_size, input.size()) File "D:\anaconda3\.conda\envs\DA\lib\site-packages\torch\nn\modules\utils.py", line 34, in _list_with_default raise ValueError('Input dimension should be at least {}'.format(len(out_size) + 1)) ValueError: Input dimension should be at least 3问题出在哪

最新推荐

recommend-type

Pytorch中的VGG实现修改最后一层FC

last_linear_layer = vgg19.classifier[last_layer_index] ``` 2. 检查当前的线性层参数,确保其输出维度是正确的: ```python current_output_dim = last_linear_layer.out_features ``` 3. 创建新的线性层,将其...
recommend-type

(2024)跳槽涨薪必备精选面试题.pdf

(2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf
recommend-type

应用服务器和部分网络安全设备技术参数.doc

服务器
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层: