包含相似度和浓度的免疫遗传算法代码实现
时间: 2023-12-22 18:31:14 浏览: 82
以下是一个简单的免疫遗传算法的代码实现,其中包含相似度和浓度的概念:
```python
import random
# 定义免疫遗传算法的相关参数
population_size = 50
chromosome_length = 10
mutation_rate = 0.01
crossover_rate = 0.6
num_generations = 100
# 初始化种群
def initialize_population(size, length):
population = []
for _ in range(size):
chromosome = [random.randint(0, 1) for _ in range(length)]
population.append(chromosome)
return population
# 计算相似度
def calculate_similarity(chromosome1, chromosome2):
num_similar = sum([1 for gene1, gene2 in zip(chromosome1, chromosome2) if gene1 == gene2])
similarity = num_similar / len(chromosome1)
return similarity
# 计算浓度
def calculate_density(population, chromosome):
total_similarity = sum([calculate_similarity(chromosome, other_chromosome) for other_chromosome in population])
density = total_similarity / len(population)
return density
# 选择个体
def selection(population):
selected_population = []
for _ in range(len(population)):
chromosome1 = random.choice(population)
chromosome2 = random.choice(population)
if calculate_density(population, chromosome1) > calculate_density(population, chromosome2):
selected_population.append(chromosome1)
else:
selected_population.append(chromosome2)
return selected_population
# 交叉操作
def crossover(parent1, parent2):
crossover_point = random.randint(1, len(parent1)-1)
阅读全文