python train_test_split(shuffle)
时间: 2023-11-06 08:03:36 浏览: 112
train_test_split是一个用于划分数据集为训练集和测试集的函数。在引用中给出的参数解读中,shuffle是一个布尔值参数,用于指定是否在划分数据集之前对数据进行洗牌操作。如果shuffle参数设置为True,则在划分数据集之前会对数据进行随机洗牌操作,打乱数据的顺序。如果shuffle参数设置为False,则不会对数据进行洗牌操作。洗牌操作的目的是为了确保在划分数据集时能够保持数据的随机性,从而使得训练集和测试集的样本分布更加均匀和随机。
相关问题
Traceback (most recent call last): File "D:\python1\model_training.py", line 8, in <module> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y) # 数据拆分 File "D:\python1\venv\lib\site-packages\sklearn\model_selection\_split.py", line 2562, in train_test_split n_train, n_test = _validate_shuffle_split( File "D:\python1\venv\lib\site-packages\sklearn\model_selection\_split.py", line 2236, in _validate_shuffle_split raise ValueError( ValueError: With n_samples=0, test_size=0.2 and train_size=None, the resulting train set will be empty. Adjust any of the aforementioned parameters.
这个错误是因为您的数据的样本数量太少,无法进行正确的数据拆分。在您的代码中,您正在尝试使用 `train_test_split` 函数来将数据拆分成训练集和测试集,但是由于您的数据样本数量为0,无法进行正确的数据拆分。
请检查您的数据是否正确加载,并确保您的数据至少包含一些样本,以便进行正确的数据拆分。您还可以尝试调整您的测试集大小或训练集大小,以确保您的数据可以正确拆分。
from sklearn.model_selection import train_test_split X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
`train_test_split`函数是scikit-learn库中的一个函数,用于将数据集划分为训练集和测试集。根据你提供的引用内容,可以看出该函数的参数有`*arrays`、`test_size`、`train_size`、`random_state`、`shuffle`和`stratify`。
根据你的问题,你想要将数据集`X`和`y`划分为训练集和测试集,其中测试集占总数据集的20%,并且设置了随机种子为123。你可以使用以下代码实现:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
```
这段代码将会把`X`和`y`划分为训练集和测试集,其中测试集占总数据集的20%。划分后的训练集和测试集分别存储在`X_train`、`X_test`、`y_train`和`y_test`中。
阅读全文