X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42) 将划分好的训练集装载到train_loader中

时间: 2024-04-04 14:27:05 浏览: 20
train_test_split函数是用于将数据集划分为训练集和测试集的常用函数。它的作用是将输入的images和labels按照指定的比例(test_size)进行划分,并返回划分好的训练集和测试集。 具体来说,X_train和y_train是训练集的特征和标签,X_test和y_test是测试集的特征和标签。train_test_split函数会将输入的images和labels按照指定的比例进行划分,并将划分好的训练集的特征和标签分别赋值给X_train和y_train,将划分好的测试集的特征和标签分别赋值给X_test和y_test。 在将划分好的训练集装载到train_loader中之前,需要先将X_train和y_train转换为Tensor类型,并创建一个数据加载器train_loader来加载训练集数据。 以下是将划分好的训练集装载到train_loader中的代码示例: ```python import torch from torch.utils.data import DataLoader, TensorDataset # 将X_train和y_train转换为Tensor类型 X_train_tensor = torch.Tensor(X_train) y_train_tensor = torch.Tensor(y_train) # 创建一个TensorDataset对象,用于封装训练集的特征和标签 train_dataset = TensorDataset(X_train_tensor, y_train_tensor) # 创建一个数据加载器train_loader来加载训练集数据 train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) ``` 上述代码中,首先使用torch.Tensor将X_train和y_train转换为Tensor类型。然后,使用TensorDataset将转换后的特征和标签封装成一个数据集对象train_dataset。最后,使用DataLoader创建一个数据加载器train_loader,用于按批次加载训练集数据,其中batch_size表示每个批次的样本数量,shuffle表示是否打乱数据顺序。

相关推荐

下面的代码哪里有问题,帮我改一下from __future__ import print_function import numpy as np import tensorflow import keras from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers import Conv2D,MaxPooling2D from keras import backend as K import tensorflow as tf import datetime import os np.random.seed(0) from sklearn.model_selection import train_test_split from PIL import Image import matplotlib.pyplot as plt from keras.datasets import mnist images = [] labels = [] (x_train,y_train),(x_test,y_test)=mnist.load_data() X = np.array(images) print (X.shape) y = np.array(list(map(int, labels))) print (y.shape) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) print (x_train.shape) print (x_test.shape) print (y_train.shape) print (y_test.shape) ############################ ########## batch_size = 20 num_classes = 4 learning_rate = 0.0001 epochs = 10 img_rows,img_cols = 32 , 32 if K.image_data_format() =='channels_first': x_train =x_train.reshape(x_train.shape[0],1,img_rows,img_cols) x_test = x_test.reshape(x_test.shape[0],1,img_rows,img_cols) input_shape = (1,img_rows,img_cols) else: x_train = x_train.reshape(x_train.shape[0],img_rows,img_cols,1) x_test = x_test.reshape(x_test.shape[0],img_rows,img_cols,1) input_shape =(img_rows,img_cols,1) x_train =x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:',x_train.shape) print(x_train.shape[0],'train samples') print(x_test.shape[0],'test samples')

import cv2 from skimage.feature import hog # 加载LFW数据集 from sklearn.datasets import fetch_lfw_people lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # 将数据集划分为训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(lfw_people.images, lfw_people.target, test_size=0.2, random_state=42) # 图像预处理和特征提取 from skimage import exposure import numpy as np train_features = [] for i in range(X_train.shape[0]): # 将人脸图像转换为灰度图 gray_img = cv2.cvtColor(X_train[i], cv2.COLOR_BGR2GRAY) # 归一化像素值 gray_img = cv2.normalize(gray_img, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F) # 计算HOG特征 hog_features, hog_image = hog(gray_img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2', visualize=True, transform_sqrt=False) # 将HOG特征作为样本特征 train_features.append(hog_features) train_features = np.array(train_features) train_labels = y_train test_features = [] for i in range(X_test.shape[0]): # 将人脸图像转换为灰度图 gray_img = cv2.cvtColor(X_test[i], cv2.COLOR_BGR2GRAY) # 归一化像素值 gray_img = cv2.normalize(gray_img, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F) # 计算HOG特征 hog_features, hog_image = hog(gray_img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2), block_norm='L2', visualize=True, transform_sqrt=False) # 将HOG特征作为样本特征 test_features.append(hog_features) test_features = np.array(test_features) test_labels = y_test # 训练模型 from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_features, train_labels) # 对测试集中的人脸图像进行预测 predict_labels = gnb.predict(test_features) # 计算预测准确率 from sklearn.metrics import accuracy_score accuracy = accuracy_score(test_labels, predict_labels) print('Accuracy:', accuracy)

def test_mobilenet(): # todo 加载数据, 224*224的大小 模型一次训练16张图片 train_ds, test_ds, class_names = data_load(r"C:\Users\wjx\Desktop\项目\data\flower_photos_split\train", r"C:\Users\wjx\Desktop\项目\data\flower_photos_split\test", 224, 224, 16) # todo 加载模型 model = tf.keras.models.load_model("models/mobilenet_fv.h5") # model.summary() # 测试,evaluate的输出结果是验证集的损失值和准确率 loss, accuracy = model.evaluate(test_ds) # 输出结果 print('Mobilenet test accuracy :', accuracy) test_real_labels = [] test_pre_labels = [] for test_batch_images, test_batch_labels in test_ds: test_batch_labels = test_batch_labels.numpy() test_batch_pres = model.predict(test_batch_images) # print(test_batch_pres) test_batch_labels_max = np.argmax(test_batch_labels, axis=1) test_batch_pres_max = np.argmax(test_batch_pres, axis=1) # print(test_batch_labels_max) # print(test_batch_pres_max) # 将推理对应的标签取出 for i in test_batch_labels_max: test_real_labels.append(i) for i in test_batch_pres_max: test_pre_labels.append(i) # break # print(test_real_labels) # print(test_pre_labels) class_names_length = len(class_names) heat_maps = np.zeros((class_names_length, class_names_length)) for test_real_label, test_pre_label in zip(test_real_labels, test_pre_labels): heat_maps[test_real_label][test_pre_label] = heat_maps[test_real_label][test_pre_label] + 1 print(heat_maps) heat_maps_sum = np.sum(heat_maps, axis=1).reshape(-1, 1) # print(heat_maps_sum) print() heat_maps_float = heat_maps / heat_maps_sum print(heat_maps_float) # title, x_labels, y_labels, harvest show_heatmaps(title="heatmap", x_labels=class_names, y_labels=class_names, harvest=heat_maps_float, save_name="images/heatmap_mobilenet.png")

import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target print('Class labels:', np.unique(y)) def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolor='black') if test_idx: # plot all samples X_test, y_test = X[test_idx, :], y[test_idx] plt.scatter(X_test[:, 0], X_test[:, 1], c='y', edgecolor='black', alpha=1.0, linewidth=1, marker='o', s=100, label='test set') forest = RandomForestClassifier(criterion='gini', n_estimators=20,#叠加20决策树 random_state=1, n_jobs=4)#多少随机数进行运算 forest.fit(X_train, y_train) plot_decision_regions(X_combined, y_combined, classifier=forest, test_idx=range(105, 150)) plt.xlabel('petal length [cm]') plt.ylabel('petal width [cm]') plt.legend(loc='upper left') plt.tight_layout() #plt.savefig('images/03_22.png', dpi=300) plt.show()

最新推荐

recommend-type

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl.zip

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl
recommend-type

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)
recommend-type

基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不