python opencv提取螺丝区域
时间: 2023-06-30 15:02:43 浏览: 144
可以使用OpenCV的图像处理功能来提取螺丝区域,具体步骤如下:
1. 读取图片并灰度化
```python
import cv2
img = cv2.imread('screw.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
2. 使用Canny边缘检测算法检测边缘
```python
edges = cv2.Canny(gray, 50, 150)
```
3. 对边缘进行二值化处理
```python
ret, binary = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
```
4. 对二值化图像进行形态学操作,去除噪点
```python
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
binary = cv2.dilate(binary, kernel)
binary = cv2.erode(binary, kernel)
```
5. 使用轮廓检测找到螺丝区域
```python
contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
```
6. 绘制螺丝区域边框并显示图片
```python
for i in range(len(contours)):
x, y, w, h = cv2.boundingRect(contours[i])
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.imshow('screw', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
完整代码如下:
```python
import cv2
img = cv2.imread('screw.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
ret, binary = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
binary = cv2.dilate(binary, kernel)
binary = cv2.erode(binary, kernel)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)):
x, y, w, h = cv2.boundingRect(contours[i])
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.imshow('screw', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文
相关推荐















