如何将残差网络与densenet网络进行融合?实现代码model怎么写
时间: 2024-04-17 16:26:49 浏览: 117
CBAM_keras_model_keras_densenet_残差网络_inceptionnet_注意力机制
5星 · 资源好评率100%
将残差网络(ResNet)与稠密连接网络(DenseNet)进行融合可以通过以下步骤实现:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义Residual Block(残差块):
```python
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out += residual
out = self.relu(out)
return out
```
3. 定义Dense Block(稠密块):
```python
class DenseBlock(nn.Module):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(nn.Conv2d(in_channels + i * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1))
def forward(self, x):
features = [x]
for layer in self.layers:
out = layer(torch.cat(features, dim=1))
features.append(out)
out = torch.cat(features, dim=1)
return out
```
4. 定义Residual Dense Network(RDN):
```python
class RDN(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks, num_layers, growth_rate):
super(RDN, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU(inplace=True)
self.residual_blocks = nn.ModuleList()
for _ in range(num_blocks):
self.residual_blocks.append(ResidualBlock(out_channels, out_channels))
self.dense_block = DenseBlock(out_channels, growth_rate, num_layers)
self.conv2 = nn.Conv2d(out_channels + num_layers * growth_rate, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
out = self.conv1(x)
out = self.relu(out)
residual = out
for block in self.residual_blocks:
out = block(out)
out = torch.cat([residual, out], dim=1)
out = self.dense_block(out)
out = self.conv2(out)
out += residual
return out
```
5. 创建RDN模型实例:
```python
in_channels = 3
out_channels = 64
num_blocks = 6
num_layers = 4
growth_rate = 32
model = RDN(in_channels, out_channels, num_blocks, num_layers, growth_rate)
```
这个代码示例创建了一个简单的残差密集网络(Residual Dense Network,RDN)。你可以根据实际需求调整模型的参数和结构。请注意,此处只提供了一个基本的示例,实际的模型实现可能需要更多的细节和调整。
阅读全文